

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	geneticalgs 1.0 documentation

Welcome to geneticalgs’s documentation!

Contents:

	geneticalgs

	Implemented features

	Content description

	Requirements

	Installation

	Running tests

	Documentation

	geneticalgs
	geneticalgs package

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2017, Dmitriy Bobir.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	geneticalgs 1.0 documentation

geneticalgs

Implementation of standard, migration and diffusion models of genetic algorithms (GA) in python 3.5.

Benchmarking was conducted by COCO platform [http://coco.gforge.inria.fr/] v15.03.

The project summary may be found in project_summary.pdf.

Link to PyPI [https://pypi.python.org/pypi/geneticalgs].

Link to Read The Docs [https://readthedocs.org/projects/genetic-algorithms/].

Implemented features

	standard, diffusion and migration models
	with real values (searching for global minimum or maximum of the specified function)

	with binary encoding combination of some input data

	old population is completely replaced with a new computed one at the end of each generation (generational population model)

	two types of fitness value optimalization
	minimization

	maximization

	three parent selection types
	roulette wheel selection

	rank wheel selection

	tournament

	may be specified mutation probability

	may be specified any amount of random bits to be mutated

	may be specified crossover probability

	different types of crossover
	single-point

	two-point

	multiple point up to uniform crossover

	elitism may be turned on/off (the best individual may migrate to the next generation)

Content description

	/geneticalgs/ contains source codes

	/docs/ contains sphinx [http://www.sphinx-doc.org/en/stable/] source codes

	/2.7/ contains files converted from python 3.5 to python 2.7 using 3to2 module [https://pypi.python.org/pypi/3to2] as COCO platform [http://coco.gforge.inria.fr/] used in benchmarking supports only this version of python. These files (not installed package geneticalgs) are used in benchmarking. Must be copied in the directory with my_experiment.py or my_timing.py.

	/2.7/benchmark/ contains the following files:
	my_experiment.py is used for running benchmarking. Read more here [http://coco.lri.fr/COCOdoc/runningexp.html#python].

	my_timing.py is used for time complexity measurements. It has the same run conditions as the previous file.

	pproc.py is a modified file from COCO platform distribution that must be copied to bbob.v15.03/python/bbob_pproc/ in order to post-process measured data of migration GA (other models don’t need it). It is necessary due to unexpected format of records in case of migration GA.

	/benchmarking/ contains measured results and the appropriate plots of benchmarking.

	/time_complexity/ contains time results measured using my_timing.py.

	/examples/ contains examples of using the implemented genetic algorithms.

	/tests/ contains pytest [http://doc.pytest.org/en/latest/] tests

Requirements

	python 3.5+

	NumPy [http://www.numpy.org/]

	bitstring [https://pypi.python.org/pypi/bitstring/]

	sphinx [http://www.sphinx-doc.org/en/stable/] for documentation

	pytest [http://doc.pytest.org/en/latest/] for tests

Installation

Install package by typing the command

python -m pip install geneticalgs

If you have problems installing NumPy it is strongly recommended to use Anaconda [https://docs.continuum.io/].

Running tests

You may run tests by typing from the package directory

python setup.py test

Documentation

Go to the package directory and then to docs/ and type

pip install -r requirements.txt

Then type the following command in order to generate documentation in HTML

make html

And run doctest

make doctest

 Copyright 2017, Dmitriy Bobir.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	geneticalgs 1.0 documentation

geneticalgs

	geneticalgs package
	Submodules

	geneticalgs.standard_ga module

	geneticalgs.real_ga module

	geneticalgs.binary_ga module

	geneticalgs.diffusion_ga module

	geneticalgs.migration_ga module

	Module contents

 Copyright 2017, Dmitriy Bobir.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	geneticalgs 1.0 documentation

 	geneticalgs

geneticalgs package

Submodules

geneticalgs.standard_ga module

	
class geneticalgs.standard_ga.IndividualGA(chromosome, fitness_val)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

The class represents an individual of population in GA.

	
chromosome

	float, list

A chromosome represented a solution. The solution
may be binary encoded in chromosome or be a float or a list of floats
in case of dealing with real value solutions. The list contains
only positions of bit 1 (according to input data list) in case of binary encoded solution.

	
fitness_val

	float, int

Fitness value of the given chromosome.

	
class geneticalgs.standard_ga.StandardGA(fitness_func=None, optim='max', selection='rank', mut_prob=0.05, mut_type=1, cross_prob=0.95, cross_type=1, elitism=True, tournament_size=None)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

This class implements the base functionality of genetic algorithms and must be inherited.
In other words, the class doesn’t provide functionality of genetic algorithms by itself.
This class is inherited by RealGA and BinaryGA classes in the current implementation.

	
fitness_func

	function

This function must compute fitness value of a single chromosome.
Function parameters depend on the implemented subclasses of this class.

	
optim

	str

What this genetic algorithm must do with fitness value: maximize or minimize.
May be ‘min’ or ‘max’. Default is “max”.

	
selection

	str

Parent selection type. May be “rank” (Rank Wheel Selection),
“roulette” (Roulette Wheel Selection) or “tournament”. Default is “rank”.

	
tournament_size

	int

Defines the size of tournament in case of ‘selection’ == ‘tournament’.
Default is None.

	
mut_prob

	float

Probability of mutation. Recommended values are 0.5-1%. Default is 0.5% (0.05).

	
mut_type

	int

This parameter defines how many chromosome bits will be mutated. Default is 1.

	
cross_prob

	float

Probability of crossover. Recommended values are 80-95%. Default is 95% (0.95).

	
cross_type

	int

This parameter defines crossover type. The following types are allowed:
single point (1), two point (2) and multiple point (2 < cross_type).
The extreme case of multiple point crossover is uniform one (cross_type == all_bits).
The specified number of bits (cross_type) are crossed in case of multiple point crossover.
Default is 1.

	
elitism

	True, False

Elitism on/off. Default is True.

	
_check_common_parameters()[source]

	This method verifies common input parameters of a genetic algorithm.

	
_check_init_random_population(*args)[source]

	TO BE REIMPLEMENTED IN SUBCLASSES.

This method verifies the input parameters of a random initialization.

	
_compute_fitness(chromosome)[source]

	TO BE REIMPLEMENTED IN SUBCLASSES.

This method computes fitness value of the given chromosome.

	Parameters:	chromosome (float, list) – A chromosome of genetic algorithm.
Defined fitness function (self.fitness_func) must deal with such chromosomes.

	Returns:	fitness value of the given chromosome

	
_compute_rank_wheel_sum(population_size)[source]

	The method returns sum of a wheel that is necessary in parent selection process
in case of “rank” selection type.

	Parameters:	population_size (int [https://docs.python.org/library/functions.html#int]) – Size of a population.

	Returns:	sum of the wheel for the given population size

	
_conduct_tournament(population, size)[source]

	Conducts a tournament of the given size within the specified population. The population must be
sorted by chromosome’s fitness value the following way: the last population elements are the best.

	Parameters:	
	population (list [https://docs.python.org/library/functions.html#list]) – All possible competitors. Size of the population must be at least 2.
Population element is an IndividualGA object.

	size (int [https://docs.python.org/library/functions.html#int]) – Size of a tournament. It will be set to the whole population,
if it is greater than the given population size.

	Returns:	winners –
indices of a winner of the current tournament and the second best participant

	Return type:	int, int

	
_cross(parent1, parent2)[source]

	This method crosses over the two given chromosomes (parents). The first parent is a target chromosome
that means its bits will be replaced with bits of the second parent (source chromosome) with
the specified crossover probability.

	Parameters:	
	parent1 (float, list) – Target chromosome. May be a float or a list of floats, or a binary encoded combination
of the original data list (self.data) of the first parent.

	parent2 (float, list) – Source chromosome. May be a float or a list of floats, or a binary encoded combination
of the original data list (self.data) of the second parent.

	Returns:	child –
a chromosome (a binary representation, a float or a list of floats) created by the
crossover of the two given parents

	Return type:	list, float

	
_generate_random_population(*args)[source]

	TO BE REIMPLEMENTED IN SUBCLASSES.

This method generates new random population by the given input parameters.

	
_invert_bit(chromosome, bit_num)[source]

	TO BE REIMPLEMENTED IN SUBCLASSES.
This method mutates the appropriate bits of the chromosome from bit_num
with the specified mutation probability.

	Parameters:	
	chromosome (list, float) – A chromosome of population (chromosome without its fitness value).

	bit_num (list [https://docs.python.org/library/functions.html#list]) – List of bits’ numbers to invert.

	Returns:	mutated chromosome

	
_mutate(chromosome)[source]

	This method mutates (inverses bits) the given chromosome.

	Parameters:	chromosome (float, list) – a float or a list of floats, or a binary encoded combination
of the original data list (it contains positions of bit 1 according to self.data).

	Returns:	mutated chromosome as float, list of floats or binary representation (any of the mentioned
representations with inverted bits depending on subclass)

	
_random_diff(stop, n, start=0)[source]

	Creates a list of ‘n’ different random integer numbers within the interval (start, stop) (‘start’ included).

	Parameters:	
	start (int [https://docs.python.org/library/functions.html#int]) – Start value of an interval (included). Default is 0.

	stop (int [https://docs.python.org/library/functions.html#int]) – End value of an interval (excluded).

	n (int [https://docs.python.org/library/functions.html#int]) – How many different random numbers must be generated.

	Returns:	list of different random integer values from the given interval (‘start’ included)

	
_replace_bits(source, target, start, stop)[source]

	TO BE REIMPLEMENTED IN SUBCLASSES.
Replace target bits with source bits in interval (start, stop) (both included)
with the specified crossover probability. This interval represents
positions of bits to replace (minimum start point is 0 and maximum end point is self._bin_length - 1).

	Parameters:	
	source (list [https://docs.python.org/library/functions.html#list]) – Values in source are used as replacement for target.

	target (list [https://docs.python.org/library/functions.html#list]) – Values in target are replaced with values in source.

	start (int [https://docs.python.org/library/functions.html#int]) – Start point of an interval (included).

	stop (int [https://docs.python.org/library/functions.html#int]) – End point of an interval (included).

	Returns:	target with replaced bits with source one in the interval (start, stop) (both included)

	
_select_parents(population, wheel_sum=None)[source]

	Selects parents from the given population.

	Parameters:	
	population (list [https://docs.python.org/library/functions.html#list]) – Current population from which parents will be selected.
Population element is an IndividualGA object.

	wheel_sum (float [https://docs.python.org/library/functions.html#float]) – Sum of values on a wheel (different for “roulette” and “rank”).

	Returns:	parents –
selected parents

	Return type:	IndividualGA, IndividualGA

	
_sort_population()[source]

	Sorts self.population according to self.optim (“min” or “max”) in such way
that the last element of the population in both cases is the chromosome with the best fitness value.

	
_update_solution(chromosome, fitness_val)[source]

	Updates current best solution if the given one is better.

	Parameters:	
	chromosome (float, list) – Chromosome of a population (binary encoded, float or list of floats).

	fitness_val (float, int) – Fitness value of the given chromosome.

	
best_solution

	Returns tuple in the following form: (best chromosome, its fitness value).

	Returns:	tuple with the currently best found chromosome and its fitness value.

	
extend_population(elem_list)[source]

	DOES NOT WORK WITH DIFFUSION GENETIC ALGORITHM.

Extends a current population with the new elements. Be careful with type of elements
in elem_list: they must have the same type as elements of a current population,
e.g. IndividualGA objects with the appropriate chromosome representation
(binary encoded for BinaryGA, a float or a list of floats for RealGA).

	Parameters:	elem_list (list [https://docs.python.org/library/functions.html#list]) – New elements of the same type (including chromosome representation)
as in the current population.

	
init_population(chromosomes, interval=None)[source]

	Initializes a population with the given chromosomes (binary encoded, float or a list of floats).
The fitness values of these chromosomes will be computed by a specified fitness function.

It is recommended to have an amount of chromosomes equal to some squared number (9, 16, 100, 625 etc.)
in case of diffusion model of GA. Otherwise some last chromosomes will be lost
as the current implementation supports only square arrays of diffusion model.

	Parameters:	
	chromosomes (list [https://docs.python.org/library/functions.html#list]) – Chromosomes of a new population. A single chromosome in case of binary GA
is represented as a list of bits’ positions with value 1 in the following way:
LSB (least significant bit) has position (len(self.data) - 1) and
MSB (most significant bit) has position 0. If it is a GA on real values, a chromosome is represented
as a float or a list of floats in case of multiple dimensions. Size of chromosomes list must be
at least 4.

	interval (tuple [https://docs.python.org/library/functions.html#tuple]) – An interval in which we are searching the best solution.
Must be specified in case of RealGA.

	
run(max_generation)[source]

	Starts a standard GA (RealGA or BinaryGA). The algorithm performs max_generation generations and then stops.
Old population is completely replaced with a new computed one at the end of each generation.

	Parameters:	max_generation (int [https://docs.python.org/library/functions.html#int]) – Maximum number of GA generations.

	Returns:	fitness_progress –
List of average fitness values for each generation (including original population)

	Return type:	list [https://docs.python.org/library/functions.html#list]

geneticalgs.real_ga module

	
class geneticalgs.real_ga.RealGA(fitness_func=None, optim='max', selection='rank', mut_prob=0.05, mut_type=1, cross_prob=0.95, cross_type=1, elitism=True, tournament_size=None)[source]

	Bases: geneticalgs.standard_ga.StandardGA

This class realizes GA over the real values. In other words, it tries to find global minimum or
global maximum (depends on the settings) of a given fitness function.

	
fitness_func

	function

This function must compute fitness value of a single chromosome.
Function parameters depend on the implemented subclasses of this class.

	
optim

	str

What this genetic algorithm must do with fitness value: maximize or minimize.
May be ‘min’ or ‘max’. Default is “max”.

	
selection

	str

Parent selection type. May be “rank” (Rank Wheel Selection),
“roulette” (Roulette Wheel Selection) or “tournament”. Default is “rank”.

	
tournament_size

	int

Defines the size of tournament in case of ‘selection’ == ‘tournament’.
Default is None.

	
mut_prob

	float

Probability of mutation. Recommended values are 0.5-1%. Default is 0.5% (0.05).

	
mut_type

	int

This parameter defines how many chromosome bits will be mutated. Default is 1.

	
cross_prob

	float

Probability of crossover. Recommended values are 80-95%. Default is 95% (0.95).

	
cross_type

	int

This parameter defines crossover type. The following types are allowed:
single point (1), two point (2) and multiple point (2 < cross_type).
The extreme case of multiple point crossover is uniform one (cross_type == all_bits).
The specified number of bits (cross_type) are crossed in case of multiple point crossover.
Default is 1.

	
elitism

	True, False

Elitism on/off. Default is True.

You may initialize instance of this class the following way

from geneticalgs import RealGA
import math

define some function whose global minimum or maximum we are searching for
this function takes as input one-dimensional number
def fitness_function(x):
 # the same function is used in examples
 return abs(x*(math.sin(x/11)/5 + math.sin(x/110)))

initialize standard real GA with fitness maximization by default
gen_alg = RealGA(fitness_function)
initialize random one-dimensional population of size 20 within interval (0, 1000)
gen_alg.init_random_population(20, 1, (0, 1000))

Then you may start computation by gen_alg.run(number_of_generations) and obtain
the currently best found solution by gen_alg.best_solution.

	
_adjust_to_interval(var)[source]

	This method replaces NaN, inf, -inf in var by numpy.nan_to_num() and then
returns var if it is within the specified interval. Otherwise returns lower bound of the interval
if (var < lower bound) or upper bound of the interval if (var > upper bound).

	Parameters:	var (list, float) – A float or a list of floats to adjust to the specified interval.

	Returns:	adjusted input parameter

	
_check_init_random_population(size, dim, interval)[source]

	This method verifies the input parameters of a random initialization.

	Parameters:	
	size (int [https://docs.python.org/library/functions.html#int]) – Size of a new population.

	dim (int [https://docs.python.org/library/functions.html#int]) – Amount of space dimensions.

	interval (tuple [https://docs.python.org/library/functions.html#tuple]) – The generated numbers of each dimension will be
within this interval (start point included, end point excluded).
Both end points must be different integer values.

	
_check_parameters()[source]

	

	
_compute_fitness(chromosome)[source]

	This method computes fitness value of the given chromosome.

	Parameters:	chromosome (float, list) – A chromosome of genetic algorithm. May be a single float
or a list of floats in case of multiple dimensions. Defined fitness function (self.fitness_func)
must deal with this chromosome representation.

	Returns:	fitness value of the given chromosome

	
_generate_random_population(size, dim, interval)[source]

	This method generates a new random population by the given input parameters.

	Parameters:	
	size (int [https://docs.python.org/library/functions.html#int]) – Size of a new population.

	dim (int [https://docs.python.org/library/functions.html#int]) – Amount of space dimensions.

	interval (tuple [https://docs.python.org/library/functions.html#tuple]) – The generated numbers of each dimension will be
within this interval (start point included, end point excluded).

	Returns:	array –
Array rows represent chromosomes. Number of columns is specified
with dim parameter.

	Return type:	numpy.array

	
_get_chromosome_return_value(chromosome)[source]

	This method returns a vector (chromosome as a list of floats) or a single float
depending on number of elements in the given chromosome.

	Parameters:	chromosome (list [https://docs.python.org/library/functions.html#list]) – This list contains a single float or represents a vector of floats
in case of multiple dimensions.

	Returns:	chromosome[0] iff there is only 1 element in the list, otherwise chromosome

	
_get_mut_bit_offset()[source]

	Returns bit number (from left (index 0) to the right) in 32- or 64-bit big-endian floating point
binary representation (IEEE 754) from which a mantissa begins. It is necessary because this real GA implementation
mutates only mantissa bits (mutation of exponent changes a float number the undesired fast and unexpected way).

	
_invert_bit(chromosome, bit_num)[source]

	This method mutates the appropriate bits of the chromosome from bit_num
with the specified mutation probability. The method mutates bit_num’s bits of all floats
in a list represented chromosome in case of multiple dimensions.

	Parameters:	
	chromosome (float, list) – A single float or a list of floats in case of multiple dimensions.

	bit_num (list [https://docs.python.org/library/functions.html#list]) – List of bits’ numbers to invert.

	Returns:	mutated chromosome (float, list)

	
_is_chromosome_list(chromosome)[source]

	This method returns True iff chromosome is a list (even list of just 1 element),
otherwise False.

	Parameters:	chromosome (float, list) – A chromosome of GA population. May be float or a list of floats
in case of multiple dimensions.

	Returns:	True iff the given chromosome is a list (even a list of just 1 element), otherwise False.

	
_replace_bits(source, target, start, stop)[source]

	Replaces target bits with source bits in interval (start, stop) (both included)
with the specified crossover probability. This interval represents
positions of bits to replace (minimum start point is 0 and maximum end point is self._bin_length - 1).

	Parameters:	
	source (float, list) – Values in source are used as replacement for target. May be a float or a list of floats
in case of multiple dimensions.

	target (float, list) – Values in target are replaced with values in source. May be a float or a list of floats
in case of multiple dimensions.

	start (int [https://docs.python.org/library/functions.html#int]) – Start point of interval (included).

	stop (int [https://docs.python.org/library/functions.html#int]) – End point of interval (included).

	Returns:	target –
Target with replaced bits with source one in the interval (start, stop) (both included).

	Return type:	float, list

	
init_random_population(size, dim, interval)[source]

	Initializes a new random population of the given size with chromosomes’ values
within the given interval (start point included, end point excluded)
with the specified amount of dimensions.

	Parameters:	
	size (int [https://docs.python.org/library/functions.html#int]) – Size of a new random population. Must be at least 2.

	dim (int [https://docs.python.org/library/functions.html#int]) – Amount of space dimensions.

	interval (tuple [https://docs.python.org/library/functions.html#tuple]) – The generated numbers of each dimension will be
within this interval (start point included, end point excluded).

geneticalgs.binary_ga module

	
class geneticalgs.binary_ga.BinaryGA(data=None, fitness_func=None, optim='max', selection='rank', mut_prob=0.05, mut_type=1, cross_prob=0.95, cross_type=1, elitism=True, tournament_size=None)[source]

	Bases: geneticalgs.standard_ga.StandardGA

This class realizes GA over a binary encoded input data. In other words,
the algorithm tries to find a combination of the input data with the best fitness value.

You may initialize instance of this class the following way

from geneticalgs import BinaryGA

define data whose best combination we are searching for
input_data = [1,2,3,7,-1,-20]

define a simple fitness function
def fitness_function(chromosome, data):
 # this function searches for the greatest sum of numbers in data
 # chromosome contains positions (from left 0 to right *len(data)-1) of bits 1
 sum = 0
 for bit in chromosome:
 sum += data[bit]

 return sum

initialize standard binary GA
gen_alg = BinaryGA(input_data, fitness_function)
initialize random population of size 6
gen_alg.init_random_population(6)

Then you may start computation by gen_alg.run(number_of_generations) and obtain
the currently best found solution by gen_alg.best_solution.

	
_check_init_random_population(size)[source]

	This method verifies the input parameter of a random initialization.

	Parameters:	size (int [https://docs.python.org/library/functions.html#int]) – Size of a new population to check.

	Returns:	max_num –
Maximum amount of the input data combinations.

	Return type:	int [https://docs.python.org/library/functions.html#int]

	
_check_parameters()[source]

	

	
_compute_fitness(chromosome)[source]

	This method computes fitness value of the given chromosome.

	Parameters:	chromosome (list [https://docs.python.org/library/functions.html#list]) – A binary encoded chromosome of genetic algorithm.
Defined fitness function (self.fitness_func) must deal with this chromosome representation.

	Returns:	fitness value of the given chromosome

	
_generate_random_population(max_num, size)[source]

	This method generates a new random population by the given input parameters.

	Parameters:	
	max_num (int [https://docs.python.org/library/functions.html#int]) – Maximum amount of the input data combinations.

	size (int [https://docs.python.org/library/functions.html#int]) – Size of a new population.

	Returns:	population –
list if integers in interval [1, maxnum) that represents a binary encoded
combination.

	Return type:	list [https://docs.python.org/library/functions.html#list]

	
_get_bit_positions(number)[source]

	This method receives a positive decimal integer number and returns positions of bit 1 in
its binary representation. However, these positions are transformed the following way: they
are mapped on the data list (self.data) “as is”. It means that LSB (least significant bit) is
mapped on the last position of the data list (e.g. self._bin_length - 1), MSB is mapped on
the first position of the data list (e.g. 0) and so on.

	Parameters:	number (int [https://docs.python.org/library/functions.html#int]) – This decimal number represents binary encoded combination of the input data (self.data).

	Returns:	list of positions with bit 1 (these positions are mapped on the input data list “as is” and thus,
LSB is equal to index (self._bin_length - 1) of the input data list).

	
_invert_bit(chromosome, bit_num)[source]

	This method mutates the appropriate bits of the given chromosome from bit_num
with the specified mutation probability.

	Parameters:	
	chromosome (list [https://docs.python.org/library/functions.html#list]) – Binary encoded chromosome (it contains positions of bit 1 according to self.data).

	bit_num (list [https://docs.python.org/library/functions.html#list]) – List of bits’ numbers to invert.

	Returns:	mutant –
mutated chromosome as binary representation of self.data (it contains positions
of bit 1)

	Return type:	list [https://docs.python.org/library/functions.html#list]

	
_replace_bits(source, target, start, stop)[source]

	Replaces target bits with source bits in interval (start, stop) (both included)
with the specified crossover probability and returns target. This interval represents
positions of bits to replace (minimum start point is 0 and maximum end point is self._bin_length - 1).

	Parameters:	
	source (list [https://docs.python.org/library/functions.html#list]) – Values in source are used as replacement for target.

	target (list [https://docs.python.org/library/functions.html#list]) – Values in target are replaced with values in source.

	start (int [https://docs.python.org/library/functions.html#int]) – Start point of interval (included).

	stop (int [https://docs.python.org/library/functions.html#int]) – End point of interval (included).

	Returns:	target with replaced bits in the interval (start, stop) (both included)

	
init_random_population(size)[source]

	Initializes a new random population of the given size.

	Parameters:	size (int [https://docs.python.org/library/functions.html#int]) – Size of a new random population. Must be greater than 3 and less than the amount
of all possible combinations of the input data.

geneticalgs.diffusion_ga module

	
class geneticalgs.diffusion_ga.DiffusionGA(instance)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

This class implements diffusion model of genetic algorithms. The current implementation supports
four neighbours (up, down, left, right) of a currently processed cell. Supports the standard selection types
(e.g. “rank”, “roulette”, “tournament”). It’s evident that the maximum tournament size is 4 in this case.

You may initialize instance of this class the following way

from geneticalgs import RealGA, DiffusionGA
import math

define some function whose global minimum or maximum we are searching for
this function takes as input one-dimensional number
def fitness_function(x):
 # the same function is used in examples
 return abs(x*(math.sin(x/11)/5 + math.sin(x/110)))

initialize standard real GA with fitness maximization by default
gen_alg = RealGA(fitness_function)
then initialize diffusion GA using the already initialized real GA instance
dga = DiffusionGA(gen_alg)
initialize random one-dimensional population of size 20 within interval (0, 1000)
dga.init_random_population(20, 1, (0, 1000))

BinaryGA is used the same way. You may start computation by dga.run(number_of_generations) and obtain
the currently best found solution by dga.best_solution.

	
_compute_diffusion_generation(chrom_arr)[source]

	This method computes a new generation of a diffusion model of GA.

	Parameters:	chrom_arr (numpy.array) – Diffusion array of chromosomes (binary encoded, float or a list of floats)
of the current generation.

	Returns:	new_chrom_array, new_fitness_arr –
New diffusion arrays of chromosomes
and their fitness values of the next generation.

	Return type:	numpy.array, numpy.array

	
_construct_diffusion_model(population)[source]

	Constructs two arrays: first for chromosomes of GA, second for their fitness values.
The current implementation supports construction of only 2D square arrays. Thus, an array side is
a square root of the given population length. If the calculated square root is a fractional number,
it will be truncated that means the last chromosomes in population may not be
presented in the constructed arrays.

	Parameters:	population (list [https://docs.python.org/library/functions.html#list]) – List of GA chromosomes. Same as in self.init_population(new_population).

	
_find_critical_values(fitness_arr)[source]

	Finds 1D or 2D array coordinates of the best and the worst fitness values in the given array.
Returns coordinates of the first occurrence of these critical values.

	Parameters:	fitness_arr (numpy.array) – Array of fitness values.

	Returns:	coords_best, coords_worst –
Coordinates of the best and the worst
fitness values as (index_best, index_worst) in 1D or ((row, column), (row, column)) in 2D.

	Return type:	tuple [https://docs.python.org/library/functions.html#tuple]

	
_get_neighbour(row, column)[source]

	The method returns a chromosome selected from the four neighbours (up, down, left, right)
of the currently processed cell (specified with the given row and column)
according to the selection type (“rank”, “roulette” or “tournament”).

	Parameters:	
	row (int [https://docs.python.org/library/functions.html#int]) – Row of a current cell.

	column (int [https://docs.python.org/library/functions.html#int]) – Column of a current cell.

	Returns:	chromosome –
A chromosome selected from neighbours
according to the specified selection type (“rank”, “roulette”, “tournament”).

	Return type:	binary encoded, float, list of floats

	
_init_diffusion_model(population)[source]

	This method constructs diffusion model from the given population
and then updates the currently best found solution.

	Parameters:	population (list [https://docs.python.org/library/functions.html#list]) – List of GA chromosomes.

	
best_solution

	Returns tuple in the following form: (best chromosome, its fitness value).

	Returns:	tuple with the currently best found chromosome and its fitness value.

	
init_population(new_population)[source]

	Initializes population with the given chromosomes (binary encoded, float or a list of floats)
in new_population. The fitness values of these chromosomes will be computed by a specified fitness function.

It is recommended to have new_population size equal to some squared number (9, 16, 100, 625 etc.)
in case of diffusion model of GA. Otherwise some last chromosomes in the given population will be lost
as the current implementation supports only square arrays of diffusion model.

	Parameters:	new_population (list [https://docs.python.org/library/functions.html#list]) – A new population of chromosomes of size at least 4.
A single chromosome in case of binary GA is represented as a list of bits’ positions
with value 1 in the following way: LSB (least significant bit) has position (len(self.data) - 1)
and MSB (most significant bit) has position 0. If it is a GA on real values,
an individual is represented as a float or a list of floats in case of multiple dimensions.

	
init_random_population(size, dim=None, interval=None)[source]

	Initializes a new random population with the given parameters.

	Parameters:	
	size (int [https://docs.python.org/library/functions.html#int]) – A size of new generated population. Must be at least 2 in case of RealGA and
at least 4 in case of BinaryGA.

	dim (int, None) – Amount of space dimensions in case of RealGA.

	interval (tuple, None) – The generated numbers of each dimension will be
within this interval (start point included, end point excluded).
Must be specified in case of RealGA.

	
population

	Returns the following tuple: (array of chromosomes, array of their fitness values).

	Returns:	array of chromosomes, array of fitness values –
Array of chromosomes and another array with
their fitness values.

	Return type:	tuple [https://docs.python.org/library/functions.html#tuple]

	
run(max_generation)[source]

	Starts a diffusion GA. The algorithm performs max_generation generations and then stops.
Old population is completely replaced with a new computed one at the end of each generation.

	Parameters:	max_generation (int [https://docs.python.org/library/functions.html#int]) – Maximum number of GA generations.

	Returns:	fitness_progress –
List of average fitness values for each generation (including original population).

	Return type:	list [https://docs.python.org/library/functions.html#list]

geneticalgs.migration_ga module

	
class geneticalgs.migration_ga.MigrationGA(type='binary')[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

This class implements migration model of GA, namely island model (not stepping-stone).
It works with binary or real GA.

	
type

	str

Type of used genetic algorithms: may be ‘binary’ or ‘real’.

You may initialize instance of this class the following way

from geneticalgs import RealGA, MigrationGA
import math

define some function whose global minimum or maximum we are searching for
this function takes as input one-dimensional number
def fitness_function(x):
 # the same function is used in examples
 return abs(x*(math.sin(x/11)/5 + math.sin(x/110)))

initialize two or more standard real GAs with fitness maximization by default
gen_alg1 = RealGA(fitness_function)
gen_alg2 = RealGA(fitness_function)

initialize random one-dimensional populations of size 10 and 15 within interval (0, 1000)
gen_alg1.init_random_population(10, 1, (0, 1000))
gen_alg2.init_random_population(15, 1, (0, 1000))

then initialize migration GA using the already initialized standard GA instances
mga = MigrationGA(type='real') # set type of used instances
mga.init_populations([gen_alg1, gen_alg2])

Migration model with BinaryGA is used the same way. You may start computation by mga.run(*args).

	
_check_parameters()[source]

	

	
_compare_solutions()[source]

	Compares best solutions of the specified GA instances and returns the best solution.

	Returns:	best_solution –
Best solution across all GA instances
as (best chromosome, its fitness value).

	Return type:	tuple [https://docs.python.org/library/functions.html#tuple]

	
init_populations(ga_list)[source]

	This method initializes migration model of GA. Type of optimization (‘min’ or ‘max’)
will be set to the same value of the first given GA instance. Valid GA instances are
RealGA and BinaryGA.

	Parameters:	ga_list (list [https://docs.python.org/library/functions.html#list]) – List of BinaryGA (or RealGA) instances with already initialized
populations.

	
run(max_generation, period=1, migrant_num=1, cloning=True, migrate=True)[source]

	Runs a migration model of GA.

	Parameters:	
	max_generation (int [https://docs.python.org/library/functions.html#int]) – Maximum number of GA generations.

	period (int [https://docs.python.org/library/functions.html#int]) – How often migration must be performed. Must be less than or equal to max_generation.

	migrant_num (int [https://docs.python.org/library/functions.html#int]) – How many best migrants will travel to all another populations.

	cloning (True, False) – Can migrants clone? If False, an original population will not have
its migrants after a migration. Otherwise, clones of migrants will remain
in their original population after the migration of originals.

	migrate (True, False) – Turns on/off migration process. It is useful in case of running GA by
only one generation so period must be also set to 1, but you want to perform migration with period
greater than 1 and thus, set migrate initially to False and set it to True when you actually want
the algorithm to perform migration. This was used in benchmarking by COCO BBOB platform.

	Returns:	fitness_progress, best_solution –
fitness_progress contains lists of average fitness
value of each generation for each specified GA instance. best_solution is the best solution
across all GA instances as in form (best chromosome, its fitness value).

	Return type:	tuple [https://docs.python.org/library/functions.html#tuple]

You may use this method the standard way

avg_fitness_progress, best_solution = mga.run(50, 10, 2)

or in more unusual way if you want to get the best found solution for each generation

max_generation = 10
for i in range(max_generation):
 # perform migration every four generations
 if i > 0 and i % 3 == 0:
 migrate = True
 else:
 migrate = False

 _, best_solution = mga.run(1, 1, 2, cloning=True, migrate=migrate)

Module contents

	
class geneticalgs.StandardGA(fitness_func=None, optim='max', selection='rank', mut_prob=0.05, mut_type=1, cross_prob=0.95, cross_type=1, elitism=True, tournament_size=None)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

This class implements the base functionality of genetic algorithms and must be inherited.
In other words, the class doesn’t provide functionality of genetic algorithms by itself.
This class is inherited by RealGA and BinaryGA classes in the current implementation.

	
fitness_func

	function

This function must compute fitness value of a single chromosome.
Function parameters depend on the implemented subclasses of this class.

	
optim

	str

What this genetic algorithm must do with fitness value: maximize or minimize.
May be ‘min’ or ‘max’. Default is “max”.

	
selection

	str

Parent selection type. May be “rank” (Rank Wheel Selection),
“roulette” (Roulette Wheel Selection) or “tournament”. Default is “rank”.

	
tournament_size

	int

Defines the size of tournament in case of ‘selection’ == ‘tournament’.
Default is None.

	
mut_prob

	float

Probability of mutation. Recommended values are 0.5-1%. Default is 0.5% (0.05).

	
mut_type

	int

This parameter defines how many chromosome bits will be mutated. Default is 1.

	
cross_prob

	float

Probability of crossover. Recommended values are 80-95%. Default is 95% (0.95).

	
cross_type

	int

This parameter defines crossover type. The following types are allowed:
single point (1), two point (2) and multiple point (2 < cross_type).
The extreme case of multiple point crossover is uniform one (cross_type == all_bits).
The specified number of bits (cross_type) are crossed in case of multiple point crossover.
Default is 1.

	
elitism

	True, False

Elitism on/off. Default is True.

	
best_solution

	Returns tuple in the following form: (best chromosome, its fitness value).

	Returns:	tuple with the currently best found chromosome and its fitness value.

	
extend_population(elem_list)[source]

	DOES NOT WORK WITH DIFFUSION GENETIC ALGORITHM.

Extends a current population with the new elements. Be careful with type of elements
in elem_list: they must have the same type as elements of a current population,
e.g. IndividualGA objects with the appropriate chromosome representation
(binary encoded for BinaryGA, a float or a list of floats for RealGA).

	Parameters:	elem_list (list [https://docs.python.org/library/functions.html#list]) – New elements of the same type (including chromosome representation)
as in the current population.

	
init_population(chromosomes, interval=None)[source]

	Initializes a population with the given chromosomes (binary encoded, float or a list of floats).
The fitness values of these chromosomes will be computed by a specified fitness function.

It is recommended to have an amount of chromosomes equal to some squared number (9, 16, 100, 625 etc.)
in case of diffusion model of GA. Otherwise some last chromosomes will be lost
as the current implementation supports only square arrays of diffusion model.

	Parameters:	
	chromosomes (list [https://docs.python.org/library/functions.html#list]) – Chromosomes of a new population. A single chromosome in case of binary GA
is represented as a list of bits’ positions with value 1 in the following way:
LSB (least significant bit) has position (len(self.data) - 1) and
MSB (most significant bit) has position 0. If it is a GA on real values, a chromosome is represented
as a float or a list of floats in case of multiple dimensions. Size of chromosomes list must be
at least 4.

	interval (tuple [https://docs.python.org/library/functions.html#tuple]) – An interval in which we are searching the best solution.
Must be specified in case of RealGA.

	
run(max_generation)[source]

	Starts a standard GA (RealGA or BinaryGA). The algorithm performs max_generation generations and then stops.
Old population is completely replaced with a new computed one at the end of each generation.

	Parameters:	max_generation (int [https://docs.python.org/library/functions.html#int]) – Maximum number of GA generations.

	Returns:	fitness_progress –
List of average fitness values for each generation (including original population)

	Return type:	list [https://docs.python.org/library/functions.html#list]

	
class geneticalgs.IndividualGA(chromosome, fitness_val)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

The class represents an individual of population in GA.

	
chromosome

	float, list

A chromosome represented a solution. The solution
may be binary encoded in chromosome or be a float or a list of floats
in case of dealing with real value solutions. The list contains
only positions of bit 1 (according to input data list) in case of binary encoded solution.

	
fitness_val

	float, int

Fitness value of the given chromosome.

	
class geneticalgs.BinaryGA(data=None, fitness_func=None, optim='max', selection='rank', mut_prob=0.05, mut_type=1, cross_prob=0.95, cross_type=1, elitism=True, tournament_size=None)[source]

	Bases: geneticalgs.standard_ga.StandardGA

This class realizes GA over a binary encoded input data. In other words,
the algorithm tries to find a combination of the input data with the best fitness value.

You may initialize instance of this class the following way

from geneticalgs import BinaryGA

define data whose best combination we are searching for
input_data = [1,2,3,7,-1,-20]

define a simple fitness function
def fitness_function(chromosome, data):
 # this function searches for the greatest sum of numbers in data
 # chromosome contains positions (from left 0 to right *len(data)-1) of bits 1
 sum = 0
 for bit in chromosome:
 sum += data[bit]

 return sum

initialize standard binary GA
gen_alg = BinaryGA(input_data, fitness_function)
initialize random population of size 6
gen_alg.init_random_population(6)

Then you may start computation by gen_alg.run(number_of_generations) and obtain
the currently best found solution by gen_alg.best_solution.

	
init_random_population(size)[source]

	Initializes a new random population of the given size.

	Parameters:	size (int [https://docs.python.org/library/functions.html#int]) – Size of a new random population. Must be greater than 3 and less than the amount
of all possible combinations of the input data.

	
class geneticalgs.RealGA(fitness_func=None, optim='max', selection='rank', mut_prob=0.05, mut_type=1, cross_prob=0.95, cross_type=1, elitism=True, tournament_size=None)[source]

	Bases: geneticalgs.standard_ga.StandardGA

This class realizes GA over the real values. In other words, it tries to find global minimum or
global maximum (depends on the settings) of a given fitness function.

	
fitness_func

	function

This function must compute fitness value of a single chromosome.
Function parameters depend on the implemented subclasses of this class.

	
optim

	str

What this genetic algorithm must do with fitness value: maximize or minimize.
May be ‘min’ or ‘max’. Default is “max”.

	
selection

	str

Parent selection type. May be “rank” (Rank Wheel Selection),
“roulette” (Roulette Wheel Selection) or “tournament”. Default is “rank”.

	
tournament_size

	int

Defines the size of tournament in case of ‘selection’ == ‘tournament’.
Default is None.

	
mut_prob

	float

Probability of mutation. Recommended values are 0.5-1%. Default is 0.5% (0.05).

	
mut_type

	int

This parameter defines how many chromosome bits will be mutated. Default is 1.

	
cross_prob

	float

Probability of crossover. Recommended values are 80-95%. Default is 95% (0.95).

	
cross_type

	int

This parameter defines crossover type. The following types are allowed:
single point (1), two point (2) and multiple point (2 < cross_type).
The extreme case of multiple point crossover is uniform one (cross_type == all_bits).
The specified number of bits (cross_type) are crossed in case of multiple point crossover.
Default is 1.

	
elitism

	True, False

Elitism on/off. Default is True.

You may initialize instance of this class the following way

from geneticalgs import RealGA
import math

define some function whose global minimum or maximum we are searching for
this function takes as input one-dimensional number
def fitness_function(x):
 # the same function is used in examples
 return abs(x*(math.sin(x/11)/5 + math.sin(x/110)))

initialize standard real GA with fitness maximization by default
gen_alg = RealGA(fitness_function)
initialize random one-dimensional population of size 20 within interval (0, 1000)
gen_alg.init_random_population(20, 1, (0, 1000))

Then you may start computation by gen_alg.run(number_of_generations) and obtain
the currently best found solution by gen_alg.best_solution.

	
init_random_population(size, dim, interval)[source]

	Initializes a new random population of the given size with chromosomes’ values
within the given interval (start point included, end point excluded)
with the specified amount of dimensions.

	Parameters:	
	size (int [https://docs.python.org/library/functions.html#int]) – Size of a new random population. Must be at least 2.

	dim (int [https://docs.python.org/library/functions.html#int]) – Amount of space dimensions.

	interval (tuple [https://docs.python.org/library/functions.html#tuple]) – The generated numbers of each dimension will be
within this interval (start point included, end point excluded).

	
class geneticalgs.DiffusionGA(instance)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

This class implements diffusion model of genetic algorithms. The current implementation supports
four neighbours (up, down, left, right) of a currently processed cell. Supports the standard selection types
(e.g. “rank”, “roulette”, “tournament”). It’s evident that the maximum tournament size is 4 in this case.

You may initialize instance of this class the following way

from geneticalgs import RealGA, DiffusionGA
import math

define some function whose global minimum or maximum we are searching for
this function takes as input one-dimensional number
def fitness_function(x):
 # the same function is used in examples
 return abs(x*(math.sin(x/11)/5 + math.sin(x/110)))

initialize standard real GA with fitness maximization by default
gen_alg = RealGA(fitness_function)
then initialize diffusion GA using the already initialized real GA instance
dga = DiffusionGA(gen_alg)
initialize random one-dimensional population of size 20 within interval (0, 1000)
dga.init_random_population(20, 1, (0, 1000))

BinaryGA is used the same way. You may start computation by dga.run(number_of_generations) and obtain
the currently best found solution by dga.best_solution.

	
best_solution

	Returns tuple in the following form: (best chromosome, its fitness value).

	Returns:	tuple with the currently best found chromosome and its fitness value.

	
init_population(new_population)[source]

	Initializes population with the given chromosomes (binary encoded, float or a list of floats)
in new_population. The fitness values of these chromosomes will be computed by a specified fitness function.

It is recommended to have new_population size equal to some squared number (9, 16, 100, 625 etc.)
in case of diffusion model of GA. Otherwise some last chromosomes in the given population will be lost
as the current implementation supports only square arrays of diffusion model.

	Parameters:	new_population (list [https://docs.python.org/library/functions.html#list]) – A new population of chromosomes of size at least 4.
A single chromosome in case of binary GA is represented as a list of bits’ positions
with value 1 in the following way: LSB (least significant bit) has position (len(self.data) - 1)
and MSB (most significant bit) has position 0. If it is a GA on real values,
an individual is represented as a float or a list of floats in case of multiple dimensions.

	
init_random_population(size, dim=None, interval=None)[source]

	Initializes a new random population with the given parameters.

	Parameters:	
	size (int [https://docs.python.org/library/functions.html#int]) – A size of new generated population. Must be at least 2 in case of RealGA and
at least 4 in case of BinaryGA.

	dim (int, None) – Amount of space dimensions in case of RealGA.

	interval (tuple, None) – The generated numbers of each dimension will be
within this interval (start point included, end point excluded).
Must be specified in case of RealGA.

	
population

	Returns the following tuple: (array of chromosomes, array of their fitness values).

	Returns:	array of chromosomes, array of fitness values –
Array of chromosomes and another array with
their fitness values.

	Return type:	tuple [https://docs.python.org/library/functions.html#tuple]

	
run(max_generation)[source]

	Starts a diffusion GA. The algorithm performs max_generation generations and then stops.
Old population is completely replaced with a new computed one at the end of each generation.

	Parameters:	max_generation (int [https://docs.python.org/library/functions.html#int]) – Maximum number of GA generations.

	Returns:	fitness_progress –
List of average fitness values for each generation (including original population).

	Return type:	list [https://docs.python.org/library/functions.html#list]

	
class geneticalgs.MigrationGA(type='binary')[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

This class implements migration model of GA, namely island model (not stepping-stone).
It works with binary or real GA.

	
type

	str

Type of used genetic algorithms: may be ‘binary’ or ‘real’.

You may initialize instance of this class the following way

from geneticalgs import RealGA, MigrationGA
import math

define some function whose global minimum or maximum we are searching for
this function takes as input one-dimensional number
def fitness_function(x):
 # the same function is used in examples
 return abs(x*(math.sin(x/11)/5 + math.sin(x/110)))

initialize two or more standard real GAs with fitness maximization by default
gen_alg1 = RealGA(fitness_function)
gen_alg2 = RealGA(fitness_function)

initialize random one-dimensional populations of size 10 and 15 within interval (0, 1000)
gen_alg1.init_random_population(10, 1, (0, 1000))
gen_alg2.init_random_population(15, 1, (0, 1000))

then initialize migration GA using the already initialized standard GA instances
mga = MigrationGA(type='real') # set type of used instances
mga.init_populations([gen_alg1, gen_alg2])

Migration model with BinaryGA is used the same way. You may start computation by mga.run(*args).

	
init_populations(ga_list)[source]

	This method initializes migration model of GA. Type of optimization (‘min’ or ‘max’)
will be set to the same value of the first given GA instance. Valid GA instances are
RealGA and BinaryGA.

	Parameters:	ga_list (list [https://docs.python.org/library/functions.html#list]) – List of BinaryGA (or RealGA) instances with already initialized
populations.

	
run(max_generation, period=1, migrant_num=1, cloning=True, migrate=True)[source]

	Runs a migration model of GA.

	Parameters:	
	max_generation (int [https://docs.python.org/library/functions.html#int]) – Maximum number of GA generations.

	period (int [https://docs.python.org/library/functions.html#int]) – How often migration must be performed. Must be less than or equal to max_generation.

	migrant_num (int [https://docs.python.org/library/functions.html#int]) – How many best migrants will travel to all another populations.

	cloning (True, False) – Can migrants clone? If False, an original population will not have
its migrants after a migration. Otherwise, clones of migrants will remain
in their original population after the migration of originals.

	migrate (True, False) – Turns on/off migration process. It is useful in case of running GA by
only one generation so period must be also set to 1, but you want to perform migration with period
greater than 1 and thus, set migrate initially to False and set it to True when you actually want
the algorithm to perform migration. This was used in benchmarking by COCO BBOB platform.

	Returns:	fitness_progress, best_solution –
fitness_progress contains lists of average fitness
value of each generation for each specified GA instance. best_solution is the best solution
across all GA instances as in form (best chromosome, its fitness value).

	Return type:	tuple [https://docs.python.org/library/functions.html#tuple]

You may use this method the standard way

avg_fitness_progress, best_solution = mga.run(50, 10, 2)

or in more unusual way if you want to get the best found solution for each generation

max_generation = 10
for i in range(max_generation):
 # perform migration every four generations
 if i > 0 and i % 3 == 0:
 migrate = True
 else:
 migrate = False

 _, best_solution = mga.run(1, 1, 2, cloning=True, migrate=migrate)

 Copyright 2017, Dmitriy Bobir.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	geneticalgs 1.0 documentation

 Python Module Index

 g

 			

 		
 g	

 	[image: -]
 	
 geneticalgs	

 	
 	
 geneticalgs.binary_ga	

 	
 	
 geneticalgs.diffusion_ga	

 	
 	
 geneticalgs.migration_ga	

 	
 	
 geneticalgs.real_ga	

 	
 	
 geneticalgs.standard_ga	

 Copyright 2017, Dmitriy Bobir.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	geneticalgs 1.0 documentation

Index

 _
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | O
 | P
 | R
 | S
 | T

_

 	

 	_adjust_to_interval() (geneticalgs.real_ga.RealGA method)

 	_check_common_parameters() (geneticalgs.standard_ga.StandardGA method)

 	_check_init_random_population() (geneticalgs.binary_ga.BinaryGA method)

 	

 	(geneticalgs.real_ga.RealGA method)

 	(geneticalgs.standard_ga.StandardGA method)

 	_check_parameters() (geneticalgs.binary_ga.BinaryGA method)

 	

 	(geneticalgs.migration_ga.MigrationGA method)

 	(geneticalgs.real_ga.RealGA method)

 	_compare_solutions() (geneticalgs.migration_ga.MigrationGA method)

 	_compute_diffusion_generation() (geneticalgs.diffusion_ga.DiffusionGA method)

 	_compute_fitness() (geneticalgs.binary_ga.BinaryGA method)

 	

 	(geneticalgs.real_ga.RealGA method)

 	(geneticalgs.standard_ga.StandardGA method)

 	_compute_rank_wheel_sum() (geneticalgs.standard_ga.StandardGA method)

 	_conduct_tournament() (geneticalgs.standard_ga.StandardGA method)

 	_construct_diffusion_model() (geneticalgs.diffusion_ga.DiffusionGA method)

 	_cross() (geneticalgs.standard_ga.StandardGA method)

 	_find_critical_values() (geneticalgs.diffusion_ga.DiffusionGA method)

 	_generate_random_population() (geneticalgs.binary_ga.BinaryGA method)

 	

 	(geneticalgs.real_ga.RealGA method)

 	(geneticalgs.standard_ga.StandardGA method)

 	

 	_get_bit_positions() (geneticalgs.binary_ga.BinaryGA method)

 	_get_chromosome_return_value() (geneticalgs.real_ga.RealGA method)

 	_get_mut_bit_offset() (geneticalgs.real_ga.RealGA method)

 	_get_neighbour() (geneticalgs.diffusion_ga.DiffusionGA method)

 	_init_diffusion_model() (geneticalgs.diffusion_ga.DiffusionGA method)

 	_invert_bit() (geneticalgs.binary_ga.BinaryGA method)

 	

 	(geneticalgs.real_ga.RealGA method)

 	(geneticalgs.standard_ga.StandardGA method)

 	_is_chromosome_list() (geneticalgs.real_ga.RealGA method)

 	_mutate() (geneticalgs.standard_ga.StandardGA method)

 	_random_diff() (geneticalgs.standard_ga.StandardGA method)

 	_replace_bits() (geneticalgs.binary_ga.BinaryGA method)

 	

 	(geneticalgs.real_ga.RealGA method)

 	(geneticalgs.standard_ga.StandardGA method)

 	_select_parents() (geneticalgs.standard_ga.StandardGA method)

 	_sort_population() (geneticalgs.standard_ga.StandardGA method)

 	_update_solution() (geneticalgs.standard_ga.StandardGA method)

B

 	

 	best_solution (geneticalgs.diffusion_ga.DiffusionGA attribute)

 	

 	(geneticalgs.DiffusionGA attribute)

 	(geneticalgs.StandardGA attribute)

 	(geneticalgs.standard_ga.StandardGA attribute)

 	

 	BinaryGA (class in geneticalgs)

 	

 	(class in geneticalgs.binary_ga)

C

 	

 	chromosome (geneticalgs.IndividualGA attribute)

 	

 	(geneticalgs.standard_ga.IndividualGA attribute)

 	cross_prob (geneticalgs.real_ga.RealGA attribute)

 	

 	(geneticalgs.RealGA attribute)

 	(geneticalgs.StandardGA attribute)

 	(geneticalgs.standard_ga.StandardGA attribute)

 	

 	cross_type (geneticalgs.real_ga.RealGA attribute)

 	

 	(geneticalgs.RealGA attribute)

 	(geneticalgs.StandardGA attribute)

 	(geneticalgs.standard_ga.StandardGA attribute)

D

 	

 	DiffusionGA (class in geneticalgs)

 	

 	(class in geneticalgs.diffusion_ga)

E

 	

 	elitism (geneticalgs.real_ga.RealGA attribute)

 	

 	(geneticalgs.RealGA attribute)

 	(geneticalgs.StandardGA attribute)

 	(geneticalgs.standard_ga.StandardGA attribute)

 	

 	extend_population() (geneticalgs.standard_ga.StandardGA method)

 	

 	(geneticalgs.StandardGA method)

F

 	

 	fitness_func (geneticalgs.real_ga.RealGA attribute)

 	

 	(geneticalgs.RealGA attribute)

 	(geneticalgs.StandardGA attribute)

 	(geneticalgs.standard_ga.StandardGA attribute)

 	

 	fitness_val (geneticalgs.IndividualGA attribute)

 	

 	(geneticalgs.standard_ga.IndividualGA attribute)

G

 	

 	geneticalgs (module)

 	geneticalgs.binary_ga (module)

 	geneticalgs.diffusion_ga (module)

 	

 	geneticalgs.migration_ga (module)

 	geneticalgs.real_ga (module)

 	geneticalgs.standard_ga (module)

I

 	

 	IndividualGA (class in geneticalgs)

 	

 	(class in geneticalgs.standard_ga)

 	init_population() (geneticalgs.diffusion_ga.DiffusionGA method)

 	

 	(geneticalgs.DiffusionGA method)

 	(geneticalgs.StandardGA method)

 	(geneticalgs.standard_ga.StandardGA method)

 	

 	init_populations() (geneticalgs.migration_ga.MigrationGA method)

 	

 	(geneticalgs.MigrationGA method)

 	init_random_population() (geneticalgs.binary_ga.BinaryGA method)

 	

 	(geneticalgs.BinaryGA method)

 	(geneticalgs.DiffusionGA method)

 	(geneticalgs.RealGA method)

 	(geneticalgs.diffusion_ga.DiffusionGA method)

 	(geneticalgs.real_ga.RealGA method)

M

 	

 	MigrationGA (class in geneticalgs)

 	

 	(class in geneticalgs.migration_ga)

 	mut_prob (geneticalgs.real_ga.RealGA attribute)

 	

 	(geneticalgs.RealGA attribute)

 	(geneticalgs.StandardGA attribute)

 	(geneticalgs.standard_ga.StandardGA attribute)

 	

 	mut_type (geneticalgs.real_ga.RealGA attribute)

 	

 	(geneticalgs.RealGA attribute)

 	(geneticalgs.StandardGA attribute)

 	(geneticalgs.standard_ga.StandardGA attribute)

O

 	

 	optim (geneticalgs.real_ga.RealGA attribute)

 	

 	(geneticalgs.RealGA attribute)

 	(geneticalgs.StandardGA attribute)

 	(geneticalgs.standard_ga.StandardGA attribute)

P

 	

 	population (geneticalgs.diffusion_ga.DiffusionGA attribute)

 	

 	(geneticalgs.DiffusionGA attribute)

R

 	

 	RealGA (class in geneticalgs)

 	

 	(class in geneticalgs.real_ga)

 	

 	run() (geneticalgs.diffusion_ga.DiffusionGA method)

 	

 	(geneticalgs.DiffusionGA method)

 	(geneticalgs.MigrationGA method)

 	(geneticalgs.StandardGA method)

 	(geneticalgs.migration_ga.MigrationGA method)

 	(geneticalgs.standard_ga.StandardGA method)

S

 	

 	selection (geneticalgs.real_ga.RealGA attribute)

 	

 	(geneticalgs.RealGA attribute)

 	(geneticalgs.StandardGA attribute)

 	(geneticalgs.standard_ga.StandardGA attribute)

 	

 	StandardGA (class in geneticalgs)

 	

 	(class in geneticalgs.standard_ga)

T

 	

 	tournament_size (geneticalgs.real_ga.RealGA attribute)

 	

 	(geneticalgs.RealGA attribute)

 	(geneticalgs.StandardGA attribute)

 	(geneticalgs.standard_ga.StandardGA attribute)

 	

 	type (geneticalgs.migration_ga.MigrationGA attribute)

 	

 	(geneticalgs.MigrationGA attribute)

 Copyright 2017, Dmitriy Bobir.
 Created using Sphinx 1.3.5.

 _modules/geneticalgs/standard_ga.html

 Navigation

 		
 index

 		
 modules |

 		geneticalgs 1.0 documentation »

 		Module code »

 Source code for geneticalgs.standard_ga

Copyright 2017 Dmitriy Bobir <bobirdima@gmail.com>
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import random
import numpy

[docs]class IndividualGA:
 """
 The class represents an individual of population in GA.

 Attributes:
 chromosome (float, list): A chromosome represented a solution. The solution
 may be binary encoded in chromosome or be a float or a list of floats
 in case of dealing with real value solutions. The list contains
 only positions of bit 1 (according to input data list) in case of binary encoded solution.
 fitness_val (float, int): Fitness value of the given chromosome.
 """
 def __init__(self, chromosome, fitness_val):
 """
 A constructor.

 Args:
 chromosome (float, list): A chromosome represented a solution. The solution
 may be binary encoded in chromosome or be a float or a list of floats
 in case of dealing with real value solutions. The list contains
 only positions of bit 1 (according to input data list) in case of binary encoded solution.
 fitness_val (float, int): Fitness value of the given chromosome.
 """
 self.chromosome = chromosome
 self.fitness_val = fitness_val

[docs]class StandardGA:
 """
 This class implements the base functionality of genetic algorithms and must be inherited.
 In other words, the class doesn't provide functionality of genetic algorithms by itself.
 This class is inherited by RealGA and BinaryGA classes in the current implementation.

 Attributes:
 fitness_func (function): This function must compute fitness value of a single chromosome.
 Function parameters depend on the implemented subclasses of this class.
 optim (str): What this genetic algorithm must do with fitness value: maximize or minimize.
 May be 'min' or 'max'. Default is "max".
 selection (str): Parent selection type. May be "rank" (Rank Wheel Selection),
 "roulette" (Roulette Wheel Selection) or "tournament". Default is "rank".
 tournament_size (int): Defines the size of tournament in case of 'selection' == 'tournament'.
 Default is None.
 mut_prob (float): Probability of mutation. Recommended values are 0.5-1%. Default is 0.5% (0.05).
 mut_type (int): This parameter defines how many chromosome bits will be mutated. Default is 1.
 cross_prob (float): Probability of crossover. Recommended values are 80-95%. Default is 95% (0.95).
 cross_type (int): This parameter defines crossover type. The following types are allowed:
 single point (1), two point (2) and multiple point (2 < *cross_type*).
 The extreme case of multiple point crossover is uniform one (*cross_type* == all_bits).
 The specified number of bits (*cross_type*) are crossed in case of multiple point crossover.
 Default is 1.
 elitism (True, False): Elitism on/off. Default is True.
 """
 def __init__(self, fitness_func=None, optim='max', selection="rank", mut_prob=0.05, mut_type=1,
 cross_prob=0.95, cross_type=1, elitism=True, tournament_size=None):
 """
 Args:
 fitness_func (function): This function must compute fitness value of a single chromosome.
 Function parameters depend on the implemented subclasses of this class.
 optim (str): What this genetic algorithm must do with fitness value: maximize or minimize.
 May be 'min' or 'max'. Default is "max".
 selection (str): Parent selection type. May be "rank" (Rank Wheel Selection),
 "roulette" (Roulette Wheel Selection) or "tournament". Default is "rank".
 tournament_size (int): Defines the size of tournament in case of 'selection' == 'tournament'.
 Default is None.
 mut_prob (float): Probability of mutation. Recommended values are 0.5-1%. Default is 0.5% (0.05).
 mut_type (int): This parameter defines how many chromosome bits will be mutated. Default is 1.
 cross_prob (float): Probability of crossover. Recommended values are 80-95%. Default is 95% (0.95).
 cross_type (int): This parameter defines crossover type. The following types are allowed:
 single point (1), two point (2) and multiple point (2 < *cross_type*).
 The extreme case of multiple point crossover is uniform one (*cross_type* == all_bits).
 The specified number of bits (*cross_type*) are crossed in case of multiple point crossover.
 Default is 1.
 elitism (True, False): Elitism on/off. Default is True.
 """
 self.fitness_func = fitness_func
 self.optim = optim
 self.selection = selection
 self.tournament_size = tournament_size
 self.mutation_prob = mut_prob
 self.mut_type = mut_type
 self.crossover_prob = cross_prob
 self.cross_type = cross_type
 self.elitism = elitism

 self._check_common_parameters()

 # population in standard model of GA
 self.population = None

 # mutation bit offset
 # default is 0
 self._mut_bit_offset = 0

 self.best_chromosome = None
 if optim == 'min':
 self.best_fitness = numpy.inf
 else:
 self.best_fitness = -numpy.inf

 @property
 def best_solution(self):
 """
 Returns tuple in the following form: (best chromosome, its fitness value).

 Returns:
 tuple with the currently best found chromosome and its fitness value.
 """
 return self.best_chromosome, self.best_fitness

[docs] def _check_common_parameters(self):
 """
 This method verifies common input parameters of a genetic algorithm.
 """
 if self.fitness_func is None or \
 self.optim not in ['min', 'max'] or \
 self.mutation_prob < 0 or self.mutation_prob > 1 or \
 self.mut_type < 1 or \
 self.crossover_prob < 0 or self.crossover_prob > 1 or \
 self.cross_type < 1 or \
 self.selection not in ["rank", "roulette", "tournament"] or \
 (self.selection == 'tournament' and self.tournament_size is None) or \
 self.elitism not in [True, False]:
 raise ValueError('Wrong value of input parameter.')

[docs] def _random_diff(self, stop, n, start=0):
 """
 Creates a list of 'n' different random integer numbers within the interval (start, stop) ('start' included).

 Args:
 start (int): Start value of an interval (included). Default is 0.
 stop (int): End value of an interval (excluded).
 n (int): How many different random numbers must be generated.

 Returns:
 list of different random integer values from the given interval ('start' included)
 """
 if stop - start < n:
 # there are not enough numbers in the given interval
 raise ValueError('There is not enough numbers in the given interval.')
 elif stop - start == n:
 # interval size == requested amount of numbers
 return list(range(start, stop))
 else:
 # requested amount of numbers is less than the interval size
 random_number = random.randrange(start, stop)
 used_values = [random_number]

 for i in range(1, n):
 while random_number in used_values:
 random_number = random.randrange(start, stop)

 used_values.append(random_number)

 return used_values

[docs] def _invert_bit(self, chromosome, bit_num):
 """
 TO BE REIMPLEMENTED IN SUBCLASSES.
 This method mutates the appropriate bits of the chromosome from *bit_num*
 with the specified mutation probability.

 Args:
 chromosome (list, float): A chromosome of population (chromosome without its fitness value).
 bit_num (list): List of bits' numbers to invert.

 Returns:
 mutated chromosome
 """
 raise NotImplementedError('This method must be reimplemented in subclasses.')

[docs] def _mutate(self, chromosome):
 """
 This method mutates (inverses bits) the given chromosome.

 Args:
 chromosome (float, list): a float or a list of floats, or a binary encoded combination
 of the original data list (it contains positions of bit 1 according to *self.data*).

 Returns:
 mutated chromosome as float, list of floats or binary representation (any of the mentioned
 representations with inverted bits depending on subclass)
 """
 if self._bin_length == self.mut_type:
 # it is necessary to mutate all bits with the specified mutation probability
 chromosome = self._invert_bit(chromosome, list(range(self._bin_length)))
 else:
 # mutate some bits (not all)
 inverted_bits = self._random_diff(self._bin_length, self.mut_type, start=self._mut_bit_offset)
 chromosome = self._invert_bit(chromosome, inverted_bits)

 return chromosome

[docs] def _replace_bits(self, source, target, start, stop):
 """
 TO BE REIMPLEMENTED IN SUBCLASSES.
 Replace target bits with source bits in interval (start, stop) (both included)
 with the specified crossover probability. This interval represents
 positions of bits to replace (minimum start point is 0 and maximum end point is *self._bin_length - 1*).

 Args:
 source (list): Values in source are used as replacement for target.
 target (list): Values in target are replaced with values in source.
 start (int): Start point of an interval (included).
 stop (int): End point of an interval (included).

 Returns:
 target with replaced bits with source one in the interval (start, stop) (both included)
 """
 raise NotImplementedError('This method must be reimplemented in subclasses.')

[docs] def _cross(self, parent1, parent2):
 """
 This method crosses over the two given chromosomes (parents). The first parent is a target chromosome
 that means its bits will be replaced with bits of the second parent (source chromosome) with
 the specified crossover probability.

 Args:
 parent1 (float, list): Target chromosome. May be a float or a list of floats, or a binary encoded combination
 of the original data list (*self.data*) of the first parent.
 parent2 (float, list): Source chromosome. May be a float or a list of floats, or a binary encoded combination
 of the original data list (*self.data*) of the second parent.

 Returns:
 child (list, float): a chromosome (a binary representation, a float or a list of floats) created by the
 crossover of the two given parents
 """
 try:
 # a list of floats or binary encoded combination
 new_chromosome = list(parent1)
 except TypeError:
 # a single float
 new_chromosome = parent1

 if self.cross_type == self._bin_length:
 # it is necessary to replace all bits with the specified crossover probability
 new_chromosome = self._replace_bits(parent2, new_chromosome, 0, self._bin_length - 1)
 elif self.cross_type == 1:
 # combine two parts of parents
 random_bit = random.randrange(1, self._bin_length - 1) # we want to do useful replacements
 new_chromosome = self._replace_bits(parent2, new_chromosome, random_bit + 1, self._bin_length - 1)
 elif self.cross_type == 2:
 # replace bits within an interval of two random generated points
 random_bit1 = random.randrange(self._bin_length) # we want to do useful replacements
 random_bit2 = random_bit1

 while random_bit2 == random_bit1:
 random_bit2 = random.randrange(self._bin_length)

 if random_bit1 < random_bit2:
 new_chromosome = self._replace_bits(parent2, new_chromosome, random_bit1, random_bit2)
 else:
 new_chromosome = self._replace_bits(parent2, new_chromosome, random_bit2, random_bit1)
 else:
 # cross some bits exactly (not replacement within an interval)
 cross_bits = self._random_diff(self._bin_length, self.cross_type)

 for bit in cross_bits:
 new_chromosome = self._replace_bits(parent2, new_chromosome, bit, bit)

 return new_chromosome

[docs] def _conduct_tournament(self, population, size):
 """
 Conducts a tournament of the given size within the specified population. The population must be
 sorted by chromosome's fitness value the following way: the last population elements are the best.

 Args:
 population (list): All possible competitors. Size of the population must be at least 2.
 Population element is an IndividualGA object.
 size (int): Size of a tournament. It will be set to the whole population,
 if it is greater than the given population size.

 Returns:
 winners (int, int): indices of a winner of the current tournament and the second best participant
 """
 if size < 1 or population is None:
 raise ValueError('Wrong input parameter.')

 try:
 population_size = len(population)
 except TypeError:
 raise ValueError('Population must be a list.')

 if population_size < 1:
 raise ValueError('Too small population.')

 if size > population_size:
 size = population_size

 if size == population_size:
 # the population is already sorted and tournament is conducted across the whole population
 competitors = list(range(population_size))
 else:
 competitors = self._random_diff(population_size, size)
 # sort by fitness value in the ascending order (maximization) or descending order (minimization)
 if self.optim == 'max':
 # ascending order (maximization)
 competitors.sort(key=lambda x: population[x].fitness_val)
 else:
 # descending order (minimization)
 competitors.sort(key=lambda x: population[x].fitness_val, reverse=True)

 # get the last two elements (winner and the second best participant)
 return competitors[-1], competitors[-2]

[docs] def _select_parents(self, population, wheel_sum=None):
 """
 Selects parents from the given population.

 Args:
 population (list): Current population from which parents will be selected.
 Population element is an IndividualGA object.
 wheel_sum (float): Sum of values on a wheel (different for "roulette" and "rank").

 Returns:
 parents (IndividualGA, IndividualGA): selected parents
 """
 if self.selection in ['roulette', 'rank']:
 if wheel_sum is None or wheel_sum <= 0:
 print('Wrong value of wheel sum:', wheel_sum)
 raise ValueError('Wrong value of wheel sum')

 parent1 = None
 parent2 = None
 wheel1 = random.uniform(0, wheel_sum)
 wheel2 = random.uniform(0, wheel_sum)

 sum_val = 0
 for ind, rank in zip(population, range(1, len(population) + 1)):
 if self.selection == 'roulette':
 sum_val += ind.fitness_val
 else:
 sum_val += rank

 if parent1 is None and sum_val > wheel1:
 parent1 = ind
 if parent2 is None and sum_val > wheel2:
 parent2 = ind

 if (parent1 is not None) and (parent2 is not None):
 break

 return parent1, parent2
 elif self.selection == 'tournament':
 best1, second1 = self._conduct_tournament(population, self.tournament_size)
 best2, second2 = self._conduct_tournament(population, self.tournament_size)

 if population[best1].chromosome == population[best2].chromosome:
 return population[best1], population[second2]
 else:
 return population[best1], population[best2]
 else:
 print('Unknown selection type:', self.selection)
 raise ValueError('Unknown selection type')

[docs] def _sort_population(self):
 """
 Sorts self.population according to *self.optim* ("min" or "max") in such way
 that the last element of the population in both cases is the chromosome with the best fitness value.
 """
 if self.optim == 'max':
 # an algorithm maximizes a fitness value
 # ascending order
 self.population.sort(key=lambda x: x.fitness_val)
 else:
 # an algorithm minimizes a fitness value
 # descending order
 self.population.sort(key=lambda x: x.fitness_val, reverse=True)

[docs] def _update_solution(self, chromosome, fitness_val):
 """
 Updates current best solution if the given one is better.

 Args:
 chromosome (float, list): Chromosome of a population (binary encoded, float or list of floats).
 fitness_val (float, int): Fitness value of the given chromosome.
 """
 if (self.optim == 'min' and fitness_val < self.best_fitness)\
 or (self.optim == 'max' and fitness_val > self.best_fitness):
 self.best_chromosome = chromosome
 self.best_fitness = fitness_val

[docs] def _compute_rank_wheel_sum(self, population_size):
 """
 The method returns sum of a wheel that is necessary in parent selection process
 in case of "rank" selection type.

 Args:
 population_size (int): Size of a population.

 Returns:
 sum of the wheel for the given population size
 """
 return numpy.cumsum(range(1, population_size + 1))[-1]

[docs] def _compute_fitness(self, chromosome):
 """
 TO BE REIMPLEMENTED IN SUBCLASSES.

 This method computes fitness value of the given chromosome.

 Args:
 chromosome (float, list): A chromosome of genetic algorithm.
 Defined fitness function (self.fitness_func) must deal with such chromosomes.

 Returns:
 fitness value of the given chromosome
 """
 raise NotImplementedError('This method must be reimplemented in subclasses.')

[docs] def _check_init_random_population(self, *args):
 """
 TO BE REIMPLEMENTED IN SUBCLASSES.

 This method verifies the input parameters of a random initialization.
 """
 raise NotImplementedError('This method must be reimplemented in subclasses.')

[docs] def _generate_random_population(self, *args):
 """
 TO BE REIMPLEMENTED IN SUBCLASSES.

 This method generates new random population by the given input parameters.
 """
 raise NotImplementedError('This method must be reimplemented in subclasses.')

[docs] def init_population(self, chromosomes, interval=None):
 """
 Initializes a population with the given chromosomes (binary encoded, float or a list of floats).
 The fitness values of these chromosomes will be computed by a specified fitness function.

 It is recommended to have an amount of chromosomes equal to some squared number (9, 16, 100, 625 etc.)
 in case of diffusion model of GA. Otherwise some last chromosomes will be lost
 as the current implementation supports only square arrays of diffusion model.

 Args:
 chromosomes (list): Chromosomes of a new population. A single chromosome in case of binary GA
 is represented as a list of bits' positions with value 1 in the following way:
 LSB (least significant bit) has position (len(self.data) - 1) and
 MSB (most significant bit) has position 0. If it is a GA on real values, a chromosome is represented
 as a float or a list of floats in case of multiple dimensions. Size of *chromosomes* list must be
 at least 4.
 interval (tuple): An interval in which we are searching the best solution.
 Must be specified in case of RealGA.
 """
 if not chromosomes or len(chromosomes) < 4:
 raise ValueError('New population is too small.')

 if not hasattr(self, '_data'):
 if interval is None or interval[0] >= interval[1]:
 raise ValueError('You must specify a correct interval for RealGA.')

 self.interval = interval

 self.population = []
 for chromosome in chromosomes:
 fit_val = self._compute_fitness(chromosome)
 self.population.append(IndividualGA(chromosome, fit_val))

 self._sort_population()
 self._update_solution(self.population[-1].chromosome, self.population[-1].fitness_val)

[docs] def extend_population(self, elem_list):
 """
 DOES NOT WORK WITH DIFFUSION GENETIC ALGORITHM.

 Extends a current population with the new elements. Be careful with type of elements
 in *elem_list*: they must have the same type as elements of a current population,
 e.g. IndividualGA objects with the *appropriate* chromosome representation
 (binary encoded for BinaryGA, a float or a list of floats for RealGA).

 Args:
 elem_list (list): New elements of the same type (including chromosome representation)
 as in the current population.
 """
 self.population.extend(elem_list)

 self._sort_population()
 self._update_solution(self.population[-1].chromosome, self.population[-1].fitness_val)

[docs] def run(self, max_generation):
 """
 Starts a standard GA (RealGA or BinaryGA). The algorithm performs *max_generation* generations and then stops.
 Old population is completely replaced with a new computed one at the end of each generation.

 Args:
 max_generation (int): Maximum number of GA generations.

 Returns:
 fitness_progress (list): List of average fitness values for each generation (including original population)
 """
 if max_generation < 1:
 raise ValueError('Too few generations...')

 fitness_progress = []
 fitness_sum = -1
 population_size = None

 for generation_num in range(max_generation):
 fitness_sum = sum(ind.fitness_val for ind in self.population)
 population_size = len(self.population)
 next_population = []
 fitness_progress.append(fitness_sum / population_size)

 for i in range(population_size):
 if self.selection == 'roulette':
 parent1, parent2 = self._select_parents(self.population, fitness_sum)
 elif self.selection == 'rank':
 parent1, parent2 = self._select_parents(self.population,
 self._compute_rank_wheel_sum(population_size)
)
 else:
 # tournament
 parent1, parent2 = self._select_parents(self.population)

 # cross parents and mutate a child
 new_chromosome = self._mutate(self._cross(parent1.chromosome, parent2.chromosome))
 # compute fitness value of the child
 fit_val = self._compute_fitness(new_chromosome)

 next_population.append(IndividualGA(new_chromosome, fit_val))

 if self.elitism:
 # copy the best individual to a new generation
 next_population.append(self.population[-1])

 self.population = next_population
 self._sort_population()
 self._update_solution(self.population[-1].chromosome, self.population[-1].fitness_val)

 fitness_progress.append(fitness_sum / population_size)

 return fitness_progress

 © Copyright 2017, Dmitriy Bobir.
 Created using Sphinx 1.3.5.

_modules/geneticalgs/real_ga.html

 Navigation

 		
 index

 		
 modules |

 		geneticalgs 1.0 documentation »

 		Module code »

 Source code for geneticalgs.real_ga

Copyright 2017 Dmitriy Bobir <bobirdima@gmail.com>
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

from bitstring import BitArray
import random
import numpy

from .standard_ga import StandardGA, IndividualGA

[docs]class RealGA(StandardGA):
 """
 This class realizes GA over the real values. In other words, it tries to find global minimum or
 global maximum (depends on the settings) of a given fitness function.

 Attributes:
 fitness_func (function): This function must compute fitness value of a single chromosome.
 Function parameters depend on the implemented subclasses of this class.
 optim (str): What this genetic algorithm must do with fitness value: maximize or minimize.
 May be 'min' or 'max'. Default is "max".
 selection (str): Parent selection type. May be "rank" (Rank Wheel Selection),
 "roulette" (Roulette Wheel Selection) or "tournament". Default is "rank".
 tournament_size (int): Defines the size of tournament in case of 'selection' == 'tournament'.
 Default is None.
 mut_prob (float): Probability of mutation. Recommended values are 0.5-1%. Default is 0.5% (0.05).
 mut_type (int): This parameter defines how many chromosome bits will be mutated. Default is 1.
 cross_prob (float): Probability of crossover. Recommended values are 80-95%. Default is 95% (0.95).
 cross_type (int): This parameter defines crossover type. The following types are allowed:
 single point (1), two point (2) and multiple point (2 < *cross_type*).
 The extreme case of multiple point crossover is uniform one (*cross_type* == all_bits).
 The specified number of bits (*cross_type*) are crossed in case of multiple point crossover.
 Default is 1.
 elitism (True, False): Elitism on/off. Default is True.

 You may initialize instance of this class the following way

 .. testcode::

 from geneticalgs import RealGA
 import math

 # define some function whose global minimum or maximum we are searching for
 # this function takes as input one-dimensional number
 def fitness_function(x):
 # the same function is used in examples
 return abs(x*(math.sin(x/11)/5 + math.sin(x/110)))

 # initialize standard real GA with fitness maximization by default
 gen_alg = RealGA(fitness_function)
 # initialize random one-dimensional population of size 20 within interval (0, 1000)
 gen_alg.init_random_population(20, 1, (0, 1000))

 Then you may start computation by *gen_alg.run(number_of_generations)* and obtain
 the currently best found solution by *gen_alg.best_solution*.
 """
 def __init__(self, fitness_func=None, optim='max', selection="rank", mut_prob=0.05, mut_type=1,
 cross_prob=0.95, cross_type=1, elitism=True, tournament_size=None):
 """
 Args:
 fitness_func (function): This function must compute fitness value of a single real value chromosome.
 The returned value of the this fitness function must be a single number.
 optim (str): What this genetic algorithm must do with fitness value: maximize or minimize.
 May be 'min' or 'max'. Default is "max".
 selection (str): Parent selection type. May be "rank" (Rank Wheel Selection),
 "roulette" (Roulette Wheel Selection) or "tournament". Default is "rank".
 tournament_size (int): Defines the size of tournament in case of 'selection' == 'tournament'.
 Default is None.
 mut_prob (float): Probability of mutation. Recommended values are 0.5-1%. Default is 0.5% (0.05).
 mut_type (int): This parameter defines how many chromosome bits will be mutated.
 May be 1 (single-point), 2 (two-point), 3 or more (multiple point). Default is 1.
 cross_prob (float): Probability of crossover. Recommended values are 80-95%. Default is 95% (0.95).
 cross_type (int): This parameter defines crossover type. The following types are allowed:
 single point (1), two point (2) and multiple point (2 < cross_type).
 The extreme case of multiple point crossover is uniform one (cross_type == all_bits).
 The specified number of bits (cross_type) are crossed in case of multiple point crossover.
 Default is 1.
 elitism (True, False): Elitism on/off. Default is True.
 """
 super().__init__(fitness_func, optim, selection,
 mut_prob, mut_type, cross_prob, cross_type,
 elitism, tournament_size)
 self._bin_length = 64 # may be only 32 or 64

 self._check_parameters()

 self._mut_bit_offset = self._get_mut_bit_offset()
 self.interval = None

[docs] def _get_mut_bit_offset(self):
 """
 Returns bit number (from left (index 0) to the right) in 32- or 64-bit big-endian floating point
 binary representation (IEEE 754) from which a mantissa begins. It is necessary because this real GA implementation
 mutates only mantissa bits (mutation of exponent changes a float number the undesired fast and unexpected way).
 """
 # IEEE 754
 # big-endian floating point binary representation
 # | sign | exponent | mantissa |
 # | 1 | 8 | 23 | in 32-bit floating point
 # | 1 | 11 | 52 | in 64-bit floating point
 if self._bin_length == 32:
 return 1 + 8
 elif self._bin_length == 64:
 return 1 + 11
 else:
 raise ValueError('Wrong floating point binary length: may be only 32 or 64.')

[docs] def _check_parameters(self):
 if self._bin_length not in [32, 64] or \
 self.mut_type > self._bin_length or \
 self.cross_type > self._bin_length:
 raise ValueError('Wrong value of input parameter.')

[docs] def _is_chromosome_list(self, chromosome):
 """
 This method returns True iff chromosome is a list (even list of just 1 element),
 otherwise False.

 Args:
 chromosome (float, list): A chromosome of GA population. May be float or a list of floats
 in case of multiple dimensions.

 Returns:
 True iff the given chromosome is a list (even a list of just 1 element), otherwise False.
 """
 try:
 list(chromosome)
 return True # it is a list
 except TypeError:
 return False # it is a single number

[docs] def _get_chromosome_return_value(self, chromosome):
 """
 This method returns a vector (chromosome as a list of floats) or a single float
 depending on number of elements in the given chromosome.

 Args:
 chromosome (list): This list contains a single float or represents a vector of floats
 in case of multiple dimensions.

 Returns:
 chromosome[0] iff there is only 1 element in the list, otherwise *chromosome*
 """
 try:
 length = len(chromosome)

 if length < 1:
 raise ValueError('The given chromosome is empty!')
 elif length > 1:
 return chromosome
 else:
 return chromosome[0]
 except TypeError:
 raise ValueError('The given chromosome is not a list!')

[docs] def _adjust_to_interval(self, var):
 """
 This method replaces NaN, inf, -inf in *var* by numpy.nan_to_num() and then
 returns *var* if it is within the specified interval. Otherwise returns lower bound of the interval
 if (*var* < lower bound) or upper bound of the interval if (*var* > upper bound).

 Args:
 var (list, float): A float or a list of floats to adjust to the specified interval.

 Returns:
 adjusted input parameter
 """
 var = numpy.nan_to_num(var)

 try:
 dim = len(var)

 for num, d in zip(var, range(dim)):
 var[d] = max(min(self.interval[1], num), self.interval[0])
 except TypeError:
 var = max(min(self.interval[1], var), self.interval[0])

 return var

[docs] def _invert_bit(self, chromosome, bit_num):
 """
 This method mutates the appropriate bits of the chromosome from *bit_num*
 with the specified mutation probability. The method mutates bit_num's bits of all floats
 in a list represented chromosome in case of multiple dimensions.

 Args:
 chromosome (float, list): A single float or a list of floats in case of multiple dimensions.
 bit_num (list): List of bits' numbers to invert.

 Returns:
 mutated chromosome (float, list)
 """
 mutated_chromosome = []

 is_vector = self._is_chromosome_list(chromosome)
 if is_vector:
 origin_chromosome = chromosome
 else:
 # it is a single float, not a list
 origin_chromosome = [chromosome]

 for chrom in origin_chromosome:
 bstr = BitArray(floatbe=chrom, length=self._bin_length)

 for bit in bit_num:
 if random.uniform(0, 1) <= self.mutation_prob:
 # mutate
 bstr[bit] = not bstr[bit]

 mutated_chromosome.append(bstr.floatbe)

 return self._adjust_to_interval(self._get_chromosome_return_value(mutated_chromosome))

[docs] def _replace_bits(self, source, target, start, stop):
 """
 Replaces target bits with source bits in interval (start, stop) (both included)
 with the specified crossover probability. This interval represents
 positions of bits to replace (minimum start point is 0 and maximum end point is *self._bin_length - 1*).

 Args:
 source (float, list): Values in source are used as replacement for target. May be a float or a list of floats
 in case of multiple dimensions.
 target (float, list): Values in target are replaced with values in source. May be a float or a list of floats
 in case of multiple dimensions.
 start (int): Start point of interval (included).
 stop (int): End point of interval (included).

 Returns:
 target (float, list): Target with replaced bits with source one in the interval (start, stop) (both included).
 """
 if start < 0 or start >= self._bin_length or \
 stop < 0 or stop < start or stop >= self._bin_length:
 print('Interval error:', '(' + str(start) + ', ' + str(stop) + ')')
 raise ValueError('Replacement interval error')

 is_vector = self._is_chromosome_list(source)
 if is_vector:
 origin_source = source
 origin_target = target
 else:
 # it is a single float, not a list
 origin_source = [source]
 origin_target = [target]

 child = []
 for source_ind, target_ind in zip(origin_source, origin_target):
 bstr_source = BitArray(floatbe=source_ind, length=self._bin_length)
 bstr_target = BitArray(floatbe=target_ind, length=self._bin_length)

 if random.uniform(0, 1) <= self.crossover_prob:
 # crossover
 if start == stop:
 bstr_target[start] = bstr_source[start]
 else:
 bstr_target[start: stop + 1] = bstr_source[start: stop + 1]

 child.append(bstr_target.floatbe)

 return self._adjust_to_interval(self._get_chromosome_return_value(child))

[docs] def _compute_fitness(self, chromosome):
 """
 This method computes fitness value of the given chromosome.

 Args:
 chromosome (float, list): A chromosome of genetic algorithm. May be a single float
 or a list of floats in case of multiple dimensions. Defined fitness function (*self.fitness_func*)
 must deal with this chromosome representation.

 Returns:
 fitness value of the given chromosome
 """
 return self.fitness_func(chromosome)

[docs] def _check_init_random_population(self, size, dim, interval):
 """
 This method verifies the input parameters of a random initialization.

 Args:
 size (int): Size of a new population.
 dim (int): Amount of space dimensions.
 interval (tuple): The generated numbers of each dimension will be
 within this interval (start point included, end point excluded).
 Both end points must be *different* integer values.
 """
 if size is None or dim is None or interval is None or \
 size < 2 or dim < 1 or interval[0] >= interval[1]:
 raise ValueError('Wrong value of input parameter.')

[docs] def _generate_random_population(self, size, dim, interval):
 """
 This method generates a new random population by the given input parameters.

 Args:
 size (int): Size of a new population.
 dim (int): Amount of space dimensions.
 interval (tuple): The generated numbers of each dimension will be
 within this interval (start point included, end point excluded).

 Returns:
 array (numpy.array): Array rows represent chromosomes. Number of columns is specified
 with *dim* parameter.
 """
 self.interval = interval
 return numpy.random.uniform(interval[0], interval[1], (int(size), int(dim)))

[docs] def init_random_population(self, size, dim, interval):
 """
 Initializes a new random population of the given size with chromosomes' values
 within the given interval (start point included, end point excluded)
 with the specified amount of dimensions.

 Args:
 size (int): Size of a new random population. Must be at least 2.
 dim (int): Amount of space dimensions.
 interval (tuple): The generated numbers of each dimension will be
 within this interval (start point included, end point excluded).
 """
 self._check_init_random_population(size, dim, interval)

 # generate population
 chromosomes = self._generate_random_population(size, dim, interval)

 self.population = []
 for chrom in chromosomes:
 if dim == 1:
 chromosome = chrom[0]
 else:
 chromosome = chrom

 fit_val = self._compute_fitness(chromosome)

 self.population.append(IndividualGA(chromosome, fit_val))

 self._sort_population()
 self._update_solution(self.population[-1].chromosome, self.population[-1].fitness_val)

 © Copyright 2017, Dmitriy Bobir.
 Created using Sphinx 1.3.5.

_modules/geneticalgs/diffusion_ga.html

 Navigation

 		
 index

 		
 modules |

 		geneticalgs 1.0 documentation »

 		Module code »

 Source code for geneticalgs.diffusion_ga

Copyright 2017 Dmitriy Bobir <bobirdima@gmail.com>
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import numpy
import math

from .standard_ga import IndividualGA

TYPE_BINARY = 0
TYPE_REAL = 1

[docs]class DiffusionGA:
 """
 This class implements diffusion model of genetic algorithms. The current implementation supports
 four neighbours (up, down, left, right) of a currently processed cell. Supports the standard selection types
 (e.g. "rank", "roulette", "tournament"). It's evident that the maximum tournament size is 4 in this case.

 You may initialize instance of this class the following way

 .. testcode::

 from geneticalgs import RealGA, DiffusionGA
 import math

 # define some function whose global minimum or maximum we are searching for
 # this function takes as input one-dimensional number
 def fitness_function(x):
 # the same function is used in examples
 return abs(x*(math.sin(x/11)/5 + math.sin(x/110)))

 # initialize standard real GA with fitness maximization by default
 gen_alg = RealGA(fitness_function)
 # then initialize diffusion GA using the already initialized real GA instance
 dga = DiffusionGA(gen_alg)
 # initialize random one-dimensional population of size 20 within interval (0, 1000)
 dga.init_random_population(20, 1, (0, 1000))

 BinaryGA is used the same way. You may start computation by *dga.run(number_of_generations)* and obtain
 the currently best found solution by *dga.best_solution*.
 """
 def __init__(self, instance):
 """
 A constructor.

 Args:
 instance (BinaryGA, RealGA): An instance of Binary Genetic Algorithm or of Real GA.
 Type of this instance (binary or real GA) determines behaviour of a diffusion model.
 """
 self._ga = instance

 if hasattr(self._ga, '_data'):
 self._type = TYPE_BINARY
 else:
 self._type = TYPE_REAL

 self._fitness_arr = None
 self._chrom_arr = None

 @property
 def population(self):
 """
 Returns the following tuple: (array of chromosomes, array of their fitness values).

 Returns:
 array of chromosomes, array of fitness values (tuple): Array of chromosomes and another array with
 their fitness values.
 """
 return self._chrom_arr, self._fitness_arr

 @property
 def best_solution(self):
 """
 Returns tuple in the following form: (best chromosome, its fitness value).

 Returns:
 tuple with the currently best found chromosome and its fitness value.
 """
 return self._ga.best_solution

[docs] def _get_neighbour(self, row, column):
 """
 The method returns a chromosome selected from the four neighbours (up, down, left, right)
 of the currently processed cell (specified with the given row and column)
 according to the selection type ("rank", "roulette" or "tournament").

 Args:
 row (int): Row of a current cell.
 column (int): Column of a current cell.

 Returns:
 chromosome (binary encoded, float, list of floats): A chromosome selected from neighbours
 according to the specified selection type ("rank", "roulette", "tournament").
 """
 shape = self._chrom_arr.shape
 up, down, left, right = (0, 1, 2, 3)
 DIRS = {
 up: ((row - 1) % shape[0], column),
 down: ((row + 1) % shape[0], column),
 left: (row, (column - 1) % shape[1]),
 right: (row, (column + 1) % shape[1])
 }

 arr_size = len(DIRS)
 fit_arr = numpy.empty(arr_size)
 population = []

 for d, i in zip(list(DIRS.keys()), range(arr_size)):
 fit_arr[i] = self._fitness_arr[DIRS[d]]
 population.append(IndividualGA(self._chrom_arr[DIRS[d]], fit_arr[i]))

 wheel_sum = 0
 if self._ga.selection == 'rank':
 wheel_sum = self._ga._compute_rank_wheel_sum(arr_size)
 elif self._ga.selection == 'roulette':
 wheel_sum = sum(fit_arr)

 # we need only one parent not two
 return self._ga._select_parents(population, wheel_sum)[0].chromosome

[docs] def _compute_diffusion_generation(self, chrom_arr):
 """
 This method computes a new generation of a diffusion model of GA.

 Args:
 chrom_arr (numpy.array): Diffusion array of chromosomes (binary encoded, float or a list of floats)
 of the current generation.

 Returns:
 new_chrom_array, new_fitness_arr (numpy.array, numpy.array): New diffusion arrays of chromosomes
 and their fitness values of the next generation.
 """
 shape = chrom_arr.shape
 new_chrom_arr = numpy.empty(shape, dtype=object)
 new_fitness_arr = numpy.empty(shape)

 for row in range(shape[0]):
 for column in range(shape[1]):
 parent1 = chrom_arr[row, column]
 parent2 = self._get_neighbour(row, column)

 # cross parents and mutate a child
 new_chromosome = self._ga._mutate(self._ga._cross(parent1, parent2))

 # compute fitness value of the child
 fit_val = self._ga._compute_fitness(new_chromosome)

 new_chrom_arr[row, column] = new_chromosome
 new_fitness_arr[row, column] = fit_val

 coords_best, coords_worst = self._find_critical_values(new_fitness_arr)

 if self._ga.elitism:
 # replace the worst solution in the new generation
 # with the best one from the previous generation
 new_chrom_arr[coords_worst] = self._ga.best_chromosome
 new_fitness_arr[coords_worst] = self._ga.best_fitness

 # update the best solution taking into account a new generation
 self._ga._update_solution(new_chrom_arr[coords_best], new_fitness_arr[coords_best])

 return new_chrom_arr, new_fitness_arr

[docs] def _find_critical_values(self, fitness_arr):
 """
 Finds 1D or 2D array coordinates of the best and the worst fitness values in the given array.
 Returns coordinates of the first occurrence of these critical values.

 Args:
 fitness_arr (numpy.array): Array of fitness values.

 Returns:
 coords_best, coords_worst (tuple): Coordinates of the best and the worst
 fitness values as (index_best, index_worst) in 1D or ((row, column), (row, column)) in 2D.
 """
 # get indices of the best and the worst solutions in new generation
 # actually indices of ALL solutions with the best and the worst fitness values
 indices_max = numpy.where(fitness_arr == fitness_arr.max())
 indices_min = numpy.where(fitness_arr == fitness_arr.min())
 arr_dim = len(fitness_arr.shape)

 if arr_dim > 2:
 raise ValueError('Only 1D or 2D arrays are supported.')

 if self._ga.optim == 'min':
 # fitness minimization
 if arr_dim == 1:
 coords_worst = indices_max[0][0]
 coords_best = indices_min[0][0]
 else:
 coords_worst = (indices_max[0][0], indices_max[1][0])
 coords_best = (indices_min[0][0], indices_min[1][0])
 else:
 # fitness maximization
 if arr_dim == 1:
 coords_worst = indices_min[0][0]
 coords_best = indices_max[0][0]
 else:
 coords_worst = (indices_min[0][0], indices_min[1][0])
 coords_best = (indices_max[0][0], indices_max[1][0])

 return coords_best, coords_worst

[docs] def _construct_diffusion_model(self, population):
 """
 Constructs two arrays: first for chromosomes of GA, second for their fitness values.
 The current implementation supports construction of only 2D square arrays. Thus, an array side is
 a square root of the given population length. If the calculated square root is a fractional number,
 it will be truncated that means the last chromosomes in population may not be
 presented in the constructed arrays.

 Args:
 population (list): List of GA chromosomes. Same as in *self.init_population(new_population)*.
 """
 size = int(math.sqrt(len(population)))

 self._chrom_arr = numpy.empty((size, size), dtype=object)
 self._fitness_arr = numpy.empty((size, size))

 index = 0
 for row in range(size):
 for column in range(size):
 self._chrom_arr[row, column] = population[index]
 self._fitness_arr[row, column] = self._ga._compute_fitness(population[index])

 index += 1

[docs] def _init_diffusion_model(self, population):
 """
 This method constructs diffusion model from the given population
 and then updates the currently best found solution.

 Args:
 population (list): List of GA chromosomes.
 """
 self._construct_diffusion_model(population)

 coords_best, _ = self._find_critical_values(self._fitness_arr)
 self._ga._update_solution(self._chrom_arr[coords_best], self._fitness_arr[coords_best])

[docs] def init_population(self, new_population):
 """
 Initializes population with the given chromosomes (binary encoded, float or a list of floats)
 in *new_population*. The fitness values of these chromosomes will be computed by a specified fitness function.

 It is recommended to have new_population size equal to some squared number (9, 16, 100, 625 etc.)
 in case of diffusion model of GA. Otherwise some last chromosomes in the given population will be lost
 as the current implementation supports only square arrays of diffusion model.

 Args:
 new_population (list): A new population of chromosomes of size at least 4.
 A single chromosome in case of binary GA is represented as a list of bits' positions
 with value 1 in the following way: LSB (least significant bit) has position (*len(self.data)* - 1)
 and MSB (most significant bit) has position 0. If it is a GA on real values,
 an individual is represented as a float or a list of floats in case of multiple dimensions.
 """
 if not new_population or len(new_population) < 4:
 raise ValueError('New population is too small.')

 self._init_diffusion_model(new_population)

[docs] def init_random_population(self, size, dim=None, interval=None):
 """
 Initializes a new random population with the given parameters.

 Args:
 size (int): A size of new generated population. Must be at least 2 in case of RealGA and
 at least 4 in case of BinaryGA.
 dim (int, None): Amount of space dimensions in case of RealGA.
 interval (tuple, None): The generated numbers of each dimension will be
 within this interval (start point included, end point excluded).
 Must be specified in case of RealGA.
 """
 if self._type == TYPE_BINARY:
 # there is a binary GA
 max_num = self._ga._check_init_random_population(size)

 number_list = self._ga._generate_random_population(max_num, size)
 population = [self._ga._get_bit_positions(num) for num in number_list]
 else:
 # there is a GA on real values
 self._ga._check_init_random_population(size, dim, interval)

 chromosomes = self._ga._generate_random_population(size, dim, interval)

 if dim == 1:
 population = [chrom[0] for chrom in chromosomes]
 else:
 population = chromosomes

 self._init_diffusion_model(population)

[docs] def run(self, max_generation):
 """
 Starts a diffusion GA. The algorithm performs *max_generation* generations and then stops.
 Old population is completely replaced with a new computed one at the end of each generation.

 Args:
 max_generation (int): Maximum number of GA generations.

 Returns:
 fitness_progress (list): List of average fitness values for each generation (including original population).
 """
 if max_generation < 1:
 raise ValueError('Too few generations...')

 fitness_progress = []
 # we works with numpy arrays in case of diffusion model
 population_size = self._chrom_arr.size

 fitness_sum = numpy.sum(self._fitness_arr)
 for generation_num in range(max_generation):
 fitness_progress.append(fitness_sum / population_size)

 self._chrom_arr, self._fitness_arr = self._compute_diffusion_generation(self._chrom_arr)

 fitness_sum = numpy.sum(self._fitness_arr)

 fitness_progress.append(fitness_sum / population_size)

 return fitness_progress

 © Copyright 2017, Dmitriy Bobir.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		geneticalgs 1.0 documentation »

 All modules for which code is available

		geneticalgs.binary_ga

		geneticalgs.diffusion_ga

		geneticalgs.migration_ga

		geneticalgs.real_ga

		geneticalgs.standard_ga

 © Copyright 2017, Dmitriy Bobir.
 Created using Sphinx 1.3.5.

_modules/geneticalgs/migration_ga.html

 Navigation

 		
 index

 		
 modules |

 		geneticalgs 1.0 documentation »

 		Module code »

 Source code for geneticalgs.migration_ga

Copyright 2017 Dmitriy Bobir <bobirdima@gmail.com>
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import numpy
import copy

[docs]class MigrationGA:
 """
 This class implements migration model of GA, namely island model (not stepping-stone).
 It works with binary or real GA.

 Attributes:
 type (str): Type of used genetic algorithms: may be 'binary' or 'real'.

 You may initialize instance of this class the following way

 .. testcode::

 from geneticalgs import RealGA, MigrationGA
 import math

 # define some function whose global minimum or maximum we are searching for
 # this function takes as input one-dimensional number
 def fitness_function(x):
 # the same function is used in examples
 return abs(x*(math.sin(x/11)/5 + math.sin(x/110)))

 # initialize two or more standard real GAs with fitness maximization by default
 gen_alg1 = RealGA(fitness_function)
 gen_alg2 = RealGA(fitness_function)

 # initialize random one-dimensional populations of size 10 and 15 within interval (0, 1000)
 gen_alg1.init_random_population(10, 1, (0, 1000))
 gen_alg2.init_random_population(15, 1, (0, 1000))

 # then initialize migration GA using the already initialized standard GA instances
 mga = MigrationGA(type='real') # set type of used instances
 mga.init_populations([gen_alg1, gen_alg2])

 Migration model with BinaryGA is used the same way. You may start computation by *mga.run(*args)*.
 """
 def __init__(self, type='binary'):
 """
 A constructor.

 Args:
 type (str): Type of used genetic algorithms: may be 'binary' or 'real'. Default is 'binary'.
 """
 self.type = type
 self._ga_list = None
 self._ga_list_size = None
 self._optim = None
 self._min_elements = numpy.inf

 self._check_parameters()

[docs] def _check_parameters(self):
 if self.type not in ['binary', 'real']:
 raise ValueError('Wrong value of input parameter.')

[docs] def init_populations(self, ga_list):
 """
 This method initializes migration model of GA. Type of optimization ('min' or 'max')
 will be set to the same value of the first given GA instance. Valid GA instances are
 RealGA and BinaryGA.

 Args:
 ga_list (list): List of BinaryGA (or RealGA) instances with already initialized
 populations.
 """
 self._ga_list_size = len(ga_list)

 if self._ga_list_size < 2:
 raise ValueError('Too few populations.')

 for ga_inst in ga_list:
 if len(ga_inst.population) < self._min_elements:
 self._min_elements = len(ga_inst.population)

 self._ga_list = copy.deepcopy(ga_list)
 self._optim = ga_list[0].optim

[docs] def _compare_solutions(self):
 """
 Compares best solutions of the specified GA instances and returns the best solution.

 Returns:
 best_solution (tuple): Best solution across all GA instances
 as (best chromosome, its fitness value).
 """
 if self._optim == 'min':
 # minimization
 best_solution = (None, numpy.inf)
 for ga_inst in self._ga_list:
 if ga_inst.best_solution[1] < best_solution[1]:
 best_solution = ga_inst.best_solution
 else:
 # maximization
 best_solution = (None, -numpy.inf)
 for ga_inst in self._ga_list:
 if ga_inst.best_solution[1] > best_solution[1]:
 best_solution = ga_inst.best_solution

 return best_solution

[docs] def run(self, max_generation, period=1, migrant_num=1, cloning=True, migrate=True):
 """
 Runs a migration model of GA.

 Args:
 max_generation (int): Maximum number of GA generations.
 period (int): How often migration must be performed. Must be less than or equal to *max_generation*.
 migrant_num (int): How many best migrants will travel to all another populations.
 cloning (True, False): Can migrants clone? If False, an original population will not have
 its migrants after a migration. Otherwise, clones of migrants will remain
 in their original population after the migration of originals.
 migrate (True, False): Turns on/off migration process. It is useful in case of running GA by
 only *one* generation so *period* must be also set to 1, but you want to perform migration with period
 greater than 1 and thus, set migrate initially to False and set it to True when you actually want
 the algorithm to perform migration. This was used in benchmarking by COCO BBOB platform.

 Returns:
 fitness_progress, best_solution (tuple): *fitness_progress* contains lists of average fitness
 value of each generation for each specified GA instance. *best_solution* is the best solution
 across all GA instances as in form (best chromosome, its fitness value).

 You may use this method the standard way

 .. testsetup::

 from geneticalgs import RealGA, MigrationGA
 import math

 # define some function whose global minimum or maximum we are searching for
 # this function takes as input one-dimensional number
 def fitness_function(x):
 # the same function is used in examples
 return abs(x*(math.sin(x/11)/5 + math.sin(x/110)))

 # initialize two or more standard real GAs with fitness maximization by default
 gen_alg1 = RealGA(fitness_function)
 gen_alg2 = RealGA(fitness_function)

 # initialize random one-dimensional populations of size 10 and 15 within interval (0, 1000)
 gen_alg1.init_random_population(10, 1, (0, 1000))
 gen_alg2.init_random_population(15, 1, (0, 1000))

 # then initialize migration GA using the already initialized standard GA instances
 mga = MigrationGA(type='real') # set type of used instances
 mga.init_populations([gen_alg1, gen_alg2])

 .. testcode::

 avg_fitness_progress, best_solution = mga.run(50, 10, 2)

 or in more unusual way if you want to get the best found solution for each generation

 .. testcode::

 max_generation = 10
 for i in range(max_generation):
 # perform migration every four generations
 if i > 0 and i % 3 == 0:
 migrate = True
 else:
 migrate = False

 _, best_solution = mga.run(1, 1, 2, cloning=True, migrate=migrate)

 """
 if max_generation < 1 or period > max_generation or period < 1 or\
 migrant_num < 1 or migrant_num > self._min_elements or\
 cloning not in [True, False] or migrate not in [True, False]:
 raise ValueError('Wrong value of the input parameter.')

 cycle = max_generation // period
 fitness_progress = [[] for i in range(self._ga_list_size)]

 for c in range(cycle):
 migrant_list = [[] for i in range(self._ga_list_size)]

 for ga_inst, index in zip(self._ga_list, range(self._ga_list_size)):
 # run standard GA and store average fitness progress
 fit_prog = ga_inst.run(period)

 if c < cycle - 1:
 # the current fitness progress has the last value of the previous one
 # we don't need the last fitness value twice
 fitness_progress[index].extend(fit_prog[:-1])
 else:
 fitness_progress[index].extend(fit_prog)

 if migrate:
 for m in range(-migrant_num, 0, 1):
 migrant_list[index].append(ga_inst.population[m])

 if not cloning:
 # no clones: remove the best *migrant_num* migrants
 del ga_inst.population[-migrant_num:]

 # perform migration
 if migrate:
 for ga_inst, index in zip(self._ga_list, range(self._ga_list_size)):
 # TODO uncomment in case of benchmarking using *my_experiment.py*
 # del ga_inst.population[:migrant_num] # uncomment for benchmarking on 2 populations

 for idx in range(self._ga_list_size):
 if idx != index:
 ga_inst.extend_population(migrant_list[idx])

 return fitness_progress, self._compare_solutions()

 © Copyright 2017, Dmitriy Bobir.
 Created using Sphinx 1.3.5.

_modules/geneticalgs/binary_ga.html

 Navigation

 		
 index

 		
 modules |

 		geneticalgs 1.0 documentation »

 		Module code »

 Source code for geneticalgs.binary_ga

Copyright 2017 Dmitriy Bobir <bobirdima@gmail.com>
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import random

from .standard_ga import StandardGA, IndividualGA

[docs]class BinaryGA(StandardGA):
 """
 This class realizes GA over a binary encoded input data. In other words,
 the algorithm tries to find a combination of the input data with the best fitness value.

 You may initialize instance of this class the following way

 .. testcode::

 from geneticalgs import BinaryGA

 # define data whose best combination we are searching for
 input_data = [1,2,3,7,-1,-20]

 # define a simple fitness function
 def fitness_function(chromosome, data):
 # this function searches for the greatest sum of numbers in data
 # chromosome contains positions (from left 0 to right *len(data)-1) of bits 1
 sum = 0
 for bit in chromosome:
 sum += data[bit]

 return sum

 # initialize standard binary GA
 gen_alg = BinaryGA(input_data, fitness_function)
 # initialize random population of size 6
 gen_alg.init_random_population(6)

 Then you may start computation by *gen_alg.run(number_of_generations)* and obtain
 the currently best found solution by *gen_alg.best_solution*.
 """
 def __init__(self, data=None, fitness_func=None, optim='max', selection="rank", mut_prob=0.05, mut_type=1,
 cross_prob=0.95, cross_type=1, elitism=True, tournament_size=None):
 """
 Args:
 data (list): A list with elements whose combination will be binary encoded and
 evaluated by a fitness function. Minimum amount of elements is 4.
 fitness_func (function): This function must compute fitness value of a single binary encoded chromosome.
 Function template is the following: *compute_fitness(chromosome, data) -> float*. Parameter *chromosome*
 is binary encoded the following way: it contains only positions of bit 1 according to *self.data*.
 Positions are indexed from left to right so the leftmost position is 0. Parameter *data* is
 the input *data* parameter from this constructor. The returned value of the fitness function
 must be a single number.
 optim (str): What this genetic algorithm must do with fitness value: maximize or minimize.
 May be 'min' or 'max'. Default is "max".
 selection (str): Parent selection type. May be "rank" (Rank Wheel Selection),
 "roulette" (Roulette Wheel Selection) or "tournament". Default is "rank".
 tournament_size (int): Defines the size of tournament in case of 'selection' == 'tournament'.
 Default is None.
 mut_prob (float): Probability of mutation. Recommended values are 0.5-1%. Default is 0.5% (0.05).
 mut_type (int): This parameter defines how many chromosome bits will be mutated.
 May be 1 (single-point), 2 (two-point), 3 or more (multiple point). Default is 1.
 cross_prob (float): Probability of crossover. Recommended values are 80-95%. Default is 95% (0.95).
 cross_type (int): This parameter defines crossover type. The following types are allowed:
 single point (1), two point (2) and multiple point (2 < cross_type).
 The extreme case of multiple point crossover is uniform one (cross_type == all_bits).
 The specified number of bits (cross_type) are crossed in case of multiple point crossover.
 Default is 1.
 elitism (True, False): Elitism on/off. Default is True.
 """
 super().__init__(fitness_func, optim, selection,
 mut_prob, mut_type, cross_prob, cross_type,
 elitism, tournament_size)
 if data is not None:
 self._data = list(data)
 self._bin_length = len(self._data)
 else:
 self._data = None

 self._check_parameters()

[docs] def _check_parameters(self):
 if self._data is None or self._bin_length < 4 or \
 self.mut_type > self._bin_length or \
 self.cross_type > self._bin_length:
 raise ValueError('Wrong value of input parameter.')

[docs] def _invert_bit(self, chromosome, bit_num):
 """
 This method mutates the appropriate bits of the given chromosome from *bit_num*
 with the specified mutation probability.

 Args:
 chromosome (list): Binary encoded chromosome (it contains positions of bit 1 according to *self.data*).
 bit_num (list): List of bits' numbers to invert.

 Returns:
 mutant (list): mutated chromosome as binary representation of *self.data* (it contains positions
 of bit 1)
 """
 for bit in bit_num:
 if random.uniform(0, 1) <= self.mutation_prob:
 # mutate
 if bit in chromosome:
 # 1 -> 0
 chromosome.remove(bit)
 else:
 # 0 -> 1
 chromosome.append(bit)

 return chromosome

[docs] def _replace_bits(self, source, target, start, stop):
 """
 Replaces target bits with source bits in interval (start, stop) (both included)
 with the specified crossover probability and returns target. This interval represents
 positions of bits to replace (minimum start point is 0 and maximum end point is *self._bin_length - 1*).

 Args:
 source (list): Values in source are used as replacement for target.
 target (list): Values in target are replaced with values in source.
 start (int): Start point of interval (included).
 stop (int): End point of interval (included).

 Returns:
 target with replaced bits in the interval (start, stop) (both included)
 """
 if start < 0 or start >= self._bin_length or \
 stop < 0 or stop < start or stop >= self._bin_length:
 print('Interval error:', '(' + str(start) + ', ' + str(stop) + ')')
 raise ValueError('Replacement interval error')

 if start == stop:
 if random.uniform(0, 1) <= self.crossover_prob:
 # crossover
 if start in source:
 # bit 'start' is 1 in source
 if start not in target:
 # bit 'start' is 0 in target
 target.append(start)
 else:
 # bit 'start' is 0 in source
 if start in target:
 # bit 'start' is 1 in target
 target.remove(start)
 else:
 tmp_target = [0] * self._bin_length
 tmp_source = [0] * self._bin_length
 for index in target:
 tmp_target[index] = 1
 for index in source:
 tmp_source[index] = 1

 if random.uniform(0, 1) <= self.crossover_prob:
 # crossover
 tmp_target[start: stop+1] = tmp_source[start: stop+1]

 target = []
 for i in range(self._bin_length):
 if tmp_target[i] == 1:
 target.append(i)

 return target

[docs] def _compute_fitness(self, chromosome):
 """
 This method computes fitness value of the given chromosome.

 Args:
 chromosome (list): A binary encoded chromosome of genetic algorithm.
 Defined fitness function (*self.fitness_func*) must deal with this chromosome representation.

 Returns:
 fitness value of the given chromosome
 """
 return self.fitness_func(chromosome, self._data)

[docs] def _get_bit_positions(self, number):
 """
 This method receives a positive decimal integer number and returns positions of bit 1 in
 its binary representation. However, these positions are transformed the following way: they
 are mapped on the data list (*self.data*) "as is". It means that LSB (least significant bit) is
 mapped on the last position of the data list (e.g. *self._bin_length* - 1), MSB is mapped on
 the first position of the data list (e.g. 0) and so on.

 Args:
 number (int): This decimal number represents binary encoded combination of the input data (*self.data*).

 Returns:
 list of positions with bit 1 (these positions are mapped on the input data list "as is" and thus,
 LSB is equal to index (*self._bin_length* - 1) of the input data list).
 """
 if number < 0:
 raise ValueError('The input number must be positive (0+)!')

 binary_list = []

 for i in range(self._bin_length):
 if number & (1 << i):
 binary_list.append(self._bin_length - 1 - i)

 return binary_list

[docs] def _check_init_random_population(self, size):
 """
 This method verifies the input parameter of a random initialization.

 Args:
 size (int): Size of a new population to check.

 Returns:
 max_num (int): Maximum amount of the input data combinations.
 """
 max_num = 2 ** self._bin_length

 if size is None or size < 4 or size >= max_num:
 print('Wrong size of population:', size)
 raise ValueError('Wrong size of population')

 return max_num

[docs] def _generate_random_population(self, max_num, size):
 """
 This method generates a new random population by the given input parameters.

 Args:
 max_num (int): Maximum amount of the input data combinations.
 size (int): Size of a new population.

 Returns:
 population (list): list if integers in interval [1, maxnum) that represents a binary encoded
 combination.
 """
 return self._random_diff(max_num, size, start=1)

[docs] def init_random_population(self, size):
 """
 Initializes a new random population of the given size.

 Args:
 size (int): Size of a new random population. Must be greater than 3 and less than the amount
 of all possible combinations of the input data.
 """
 max_num = self._check_init_random_population(size)

 # generate population
 number_list = self._generate_random_population(max_num, size)

 self.population = []
 for num in number_list:
 chromosome = self._get_bit_positions(num)
 fit_val = self._compute_fitness(chromosome)

 self.population.append(IndividualGA(chromosome, fit_val))

 self._sort_population()
 self._update_solution(self.population[-1].chromosome, self.population[-1].fitness_val)

 © Copyright 2017, Dmitriy Bobir.
 Created using Sphinx 1.3.5.

_static/file.png

_static/down-pressed.png

_static/down.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		geneticalgs 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2017, Dmitriy Bobir.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

