
geneticalgs Documentation
Release 1.0

Dmitriy Bobir

Nov 15, 2017

Contents

1 geneticalgs 3

2 Implemented features 5

3 Content description 7

4 Requirements 9

5 Installation 11

6 Running tests 13

7 Documentation 15

8 License 17

9 geneticalgs 19
9.1 geneticalgs package . 19

10 Indices and tables 39

Python Module Index 41

i

ii

geneticalgs Documentation, Release 1.0

Contents:

Contents 1

geneticalgs Documentation, Release 1.0

2 Contents

CHAPTER 1

geneticalgs

Implementation of standard, migration and diffusion models of genetic algorithms (GA) in python 3.5.

Benchmarking was conducted by COCO platform v15.03.

The project summary may be found in project_summary.pdf.

Link to GitHub

Link to PyPI.

Link to Read The Docs.

3

http://coco.gforge.inria.fr/
https://github.com/bobirdmi/genetic-algorithms
https://pypi.python.org/pypi/geneticalgs
https://readthedocs.org/projects/genetic-algorithms/

geneticalgs Documentation, Release 1.0

4 Chapter 1. geneticalgs

CHAPTER 2

Implemented features

• standard, diffusion and migration models

– with real values (searching for global minimum or maximum of the specified function)

– with binary encoding combination of some input data

• old population is completely replaced with a new computed one at the end of each generation (generational
population model)

• two types of fitness value optimalization

– minimization

– maximization

• three parent selection types

– roulette wheel selection

– rank wheel selection

– tournament

• may be specified mutation probability

• may be specified any amount of random bits to be mutated

• may be specified crossover probability

• different types of crossover

– single-point

– two-point

– multiple point up to uniform crossover

• elitism may be turned on/off (the best individual may migrate to the next generation)

5

geneticalgs Documentation, Release 1.0

6 Chapter 2. Implemented features

CHAPTER 3

Content description

• /geneticalgs/ contains source codes

• /docs/ contains sphinx source codes

• /2.7/ contains files converted from python 3.5 to python 2.7 using 3to2 module as COCO platform used
in benchmarking supports only this version of python. These files (not installed package geneticalgs) are
used in benchmarking. Must be copied in the directory with my_experiment.py or my_timing.py.

• /2.7/benchmark/ contains the following files:

– my_experiment.py is used for running benchmarking. Read more here.

– my_timing.py is used for time complexity measurements. It has the same run conditions as the previous
file.

– pproc.py is a modified file from COCO platform distribution that must be copied to bbob.v15.03/
python/bbob_pproc/ in order to post-process measured data of migration GA (other models don’t
need it). It is necessary due to unexpected format of records in case of migration GA.

• /benchmarking/ contains measured results and the appropriate plots of benchmarking.

• /time_complexity/ contains time results measured using my_timing.py.

• /examples/ contains examples of using the implemented genetic algorithms.

• /tests/ contains pytest tests

7

http://www.sphinx-doc.org/en/stable/
https://pypi.python.org/pypi/3to2
http://coco.gforge.inria.fr/
http://coco.lri.fr/COCOdoc/runningexp.html#python
http://doc.pytest.org/en/latest/

geneticalgs Documentation, Release 1.0

8 Chapter 3. Content description

CHAPTER 4

Requirements

• python 3.5+

• NumPy

• bitstring

• sphinx for documentation

• pytest for tests

9

http://www.numpy.org/
https://pypi.python.org/pypi/bitstring/
http://www.sphinx-doc.org/en/stable/
http://doc.pytest.org/en/latest/

geneticalgs Documentation, Release 1.0

10 Chapter 4. Requirements

CHAPTER 5

Installation

Install package by typing the command

python -m pip install geneticalgs

If you have problems installing NumPy it is strongly recommended to use Anaconda.

11

https://docs.continuum.io/

geneticalgs Documentation, Release 1.0

12 Chapter 5. Installation

CHAPTER 6

Running tests

You may run tests by typing from the package directory

python setup.py test

13

geneticalgs Documentation, Release 1.0

14 Chapter 6. Running tests

CHAPTER 7

Documentation

Go to the package directory and then to docs/ and type

pip install -r requirements.txt

Then type the following command in order to generate documentation in HTML

make html

And run doctest

make doctest

15

geneticalgs Documentation, Release 1.0

16 Chapter 7. Documentation

CHAPTER 8

License

Licensed under Apache License Version 2.0.

17

http://www.apache.org/licenses/LICENSE-2.0

geneticalgs Documentation, Release 1.0

18 Chapter 8. License

CHAPTER 9

geneticalgs

9.1 geneticalgs package

9.1.1 Submodules

9.1.2 geneticalgs.standard_ga module

class geneticalgs.standard_ga.IndividualGA(chromosome, fitness_val)
Bases: object

The class represents an individual of population in GA.

chromosome
float, list – A chromosome represented a solution. The solution may be binary encoded in chromosome or
be a float or a list of floats in case of dealing with real value solutions. The list contains only positions of
bit 1 (according to input data list) in case of binary encoded solution.

fitness_val
float, int – Fitness value of the given chromosome.

class geneticalgs.standard_ga.StandardGA(fitness_func=None, optim=’max’, selec-
tion=’rank’, mut_prob=0.05, mut_type=1,
cross_prob=0.95, cross_type=1, elitism=True,
tournament_size=None)

Bases: object

This class implements the base functionality of genetic algorithms and must be inherited. In other words,
the class doesn’t provide functionality of genetic algorithms by itself. This class is inherited by RealGA and
BinaryGA classes in the current implementation.

fitness_func
function – This function must compute fitness value of a single chromosome. Function parameters depend
on the implemented subclasses of this class.

19

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

geneticalgs Documentation, Release 1.0

optim
str – What this genetic algorithm must do with fitness value: maximize or minimize. May be ‘min’ or
‘max’. Default is “max”.

selection
str – Parent selection type. May be “rank” (Rank Wheel Selection), “roulette” (Roulette Wheel Selection)
or “tournament”. Default is “rank”.

tournament_size
int – Defines the size of tournament in case of ‘selection’ == ‘tournament’. Default is None.

mut_prob
float – Probability of mutation. Recommended values are 0.5-1%. Default is 0.5% (0.05).

mut_type
int – This parameter defines how many chromosome bits will be mutated. Default is 1.

cross_prob
float – Probability of crossover. Recommended values are 80-95%. Default is 95% (0.95).

cross_type
int – This parameter defines crossover type. The following types are allowed: single point (1), two point
(2) and multiple point (2 < cross_type). The extreme case of multiple point crossover is uniform one
(cross_type == all_bits). The specified number of bits (cross_type) are crossed in case of multiple point
crossover. Default is 1.

elitism
True, False – Elitism on/off. Default is True.

_check_common_parameters()
This method verifies common input parameters of a genetic algorithm.

_check_init_random_population(*args)
TO BE REIMPLEMENTED IN SUBCLASSES.

This method verifies the input parameters of a random initialization.

_compute_fitness(chromosome)
TO BE REIMPLEMENTED IN SUBCLASSES.

This method computes fitness value of the given chromosome.

Parameters chromosome (float, list) – A chromosome of genetic algorithm. Defined
fitness function (self.fitness_func) must deal with such chromosomes.

Returns fitness value of the given chromosome

_compute_rank_wheel_sum(population_size)
The method returns sum of a wheel that is necessary in parent selection process in case of “rank” selection
type.

Parameters population_size (int) – Size of a population.

Returns sum of the wheel for the given population size

_conduct_tournament(population, size)
Conducts a tournament of the given size within the specified population. The population must be sorted
by chromosome’s fitness value the following way: the last population elements are the best.

Parameters

• population (list) – All possible competitors. Size of the population must be at least
2. Population element is an IndividualGA object.

20 Chapter 9. geneticalgs

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int

geneticalgs Documentation, Release 1.0

• size (int) – Size of a tournament. It will be set to the whole population, if it is greater
than the given population size.

Returns indices of a winner of the current tournament and the second best participant

Return type winners (int, int)

_cross(parent1, parent2)
This method crosses over the two given chromosomes (parents). The first parent is a target chromosome
that means its bits will be replaced with bits of the second parent (source chromosome) with the specified
crossover probability.

Parameters

• parent1 (float, list) – Target chromosome. May be a float or a list of floats, or a
binary encoded combination of the original data list (self.data) of the first parent.

• parent2 (float, list) – Source chromosome. May be a float or a list of floats, or a
binary encoded combination of the original data list (self.data) of the second parent.

Returns a chromosome (a binary representation, a float or a list of floats) created by the
crossover of the two given parents

Return type child (list, float)

_generate_random_population(*args)
TO BE REIMPLEMENTED IN SUBCLASSES.

This method generates new random population by the given input parameters.

_invert_bit(chromosome, bit_num)
TO BE REIMPLEMENTED IN SUBCLASSES. This method mutates the appropriate bits of the chromo-
some from bit_num with the specified mutation probability.

Parameters

• chromosome (list, float) – A chromosome of population (chromosome without
its fitness value).

• bit_num (list) – List of bits’ numbers to invert.

Returns mutated chromosome

_mutate(chromosome)
This method mutates (inverses bits) the given chromosome.

Parameters chromosome (float, list) – a float or a list of floats, or a binary encoded
combination of the original data list (it contains positions of bit 1 according to self.data).

Returns

mutated chromosome as float, list of floats or binary representation (any of the mentioned
representations with inverted bits depending on subclass)

_random_diff(stop, n, start=0)
Creates a list of ‘n’ different random integer numbers within the interval (start, stop) (‘start’ included).

Parameters

• start (int) – Start value of an interval (included). Default is 0.

• stop (int) – End value of an interval (excluded).

• n (int) – How many different random numbers must be generated.

Returns list of different random integer values from the given interval (‘start’ included)

9.1. geneticalgs package 21

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

geneticalgs Documentation, Release 1.0

_replace_bits(source, target, start, stop)
TO BE REIMPLEMENTED IN SUBCLASSES. Replace target bits with source bits in interval (start,
stop) (both included) with the specified crossover probability. This interval represents positions of bits to
replace (minimum start point is 0 and maximum end point is self._bin_length - 1).

Parameters

• source (list) – Values in source are used as replacement for target.

• target (list) – Values in target are replaced with values in source.

• start (int) – Start point of an interval (included).

• stop (int) – End point of an interval (included).

Returns target with replaced bits with source one in the interval (start, stop) (both included)

_select_parents(population, wheel_sum=None)
Selects parents from the given population.

Parameters

• population (list) – Current population from which parents will be selected. Popu-
lation element is an IndividualGA object.

• wheel_sum (float) – Sum of values on a wheel (different for “roulette” and “rank”).

Returns selected parents

Return type parents (IndividualGA, IndividualGA)

_sort_population()
Sorts self.population according to self.optim (“min” or “max”) in such way that the last element of the
population in both cases is the chromosome with the best fitness value.

_update_solution(chromosome, fitness_val)
Updates current best solution if the given one is better.

Parameters

• chromosome (float, list) – Chromosome of a population (binary encoded, float
or list of floats).

• fitness_val (float, int) – Fitness value of the given chromosome.

best_solution
Returns tuple in the following form – (best chromosome, its fitness value).

Returns tuple with the currently best found chromosome and its fitness value.

extend_population(elem_list)
DOES NOT WORK WITH DIFFUSION GENETIC ALGORITHM.

Extends a current population with the new elements. Be careful with type of elements in elem_list: they
must have the same type as elements of a current population, e.g. IndividualGA objects with the appropri-
ate chromosome representation (binary encoded for BinaryGA, a float or a list of floats for RealGA).

Parameters elem_list (list) – New elements of the same type (including chromosome
representation) as in the current population.

init_population(chromosomes, interval=None)
Initializes a population with the given chromosomes (binary encoded, float or a list of floats). The fitness
values of these chromosomes will be computed by a specified fitness function.

22 Chapter 9. geneticalgs

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int

geneticalgs Documentation, Release 1.0

It is recommended to have an amount of chromosomes equal to some squared number (9, 16, 100, 625
etc.) in case of diffusion model of GA. Otherwise some last chromosomes will be lost as the current
implementation supports only square arrays of diffusion model.

Parameters

• chromosomes (list) – Chromosomes of a new population. A single chromosome in
case of binary GA is represented as a list of bits’ positions with value 1 in the following
way: LSB (least significant bit) has position (len(self.data) - 1) and MSB (most significant
bit) has position 0. If it is a GA on real values, a chromosome is represented as a float or a
list of floats in case of multiple dimensions. Size of chromosomes list must be at least 4.

• interval (tuple) – An interval in which we are searching the best solution. Must be
specified in case of RealGA.

run(max_generation)
Starts a standard GA (RealGA or BinaryGA). The algorithm performs max_generation generations and
then stops. Old population is completely replaced with a new computed one at the end of each generation.

Parameters max_generation (int) – Maximum number of GA generations.

Returns List of average fitness values for each generation (including original population)

Return type fitness_progress (list)

9.1.3 geneticalgs.real_ga module

class geneticalgs.real_ga.RealGA(fitness_func=None, optim=’max’, selection=’rank’,
mut_prob=0.05, mut_type=1, cross_prob=0.95, cross_type=1,
elitism=True, tournament_size=None)

Bases: geneticalgs.standard_ga.StandardGA

This class realizes GA over the real values. In other words, it tries to find global minimum or global maximum
(depends on the settings) of a given fitness function.

fitness_func
function – This function must compute fitness value of a single chromosome. Function parameters depend
on the implemented subclasses of this class.

optim
str – What this genetic algorithm must do with fitness value: maximize or minimize. May be ‘min’ or
‘max’. Default is “max”.

selection
str – Parent selection type. May be “rank” (Rank Wheel Selection), “roulette” (Roulette Wheel Selection)
or “tournament”. Default is “rank”.

tournament_size
int – Defines the size of tournament in case of ‘selection’ == ‘tournament’. Default is None.

mut_prob
float – Probability of mutation. Recommended values are 0.5-1%. Default is 0.5% (0.05).

mut_type
int – This parameter defines how many chromosome bits will be mutated. Default is 1.

cross_prob
float – Probability of crossover. Recommended values are 80-95%. Default is 95% (0.95).

cross_type
int – This parameter defines crossover type. The following types are allowed: single point (1), two point

9.1. geneticalgs package 23

https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#int

geneticalgs Documentation, Release 1.0

(2) and multiple point (2 < cross_type). The extreme case of multiple point crossover is uniform one
(cross_type == all_bits). The specified number of bits (cross_type) are crossed in case of multiple point
crossover. Default is 1.

elitism
True, False – Elitism on/off. Default is True.

You may initialize instance of this class the following way

from geneticalgs import RealGA
import math

define some function whose global minimum or maximum we are searching for
this function takes as input one-dimensional number
def fitness_function(x):

the same function is used in examples
return abs(x*(math.sin(x/11)/5 + math.sin(x/110)))

initialize standard real GA with fitness maximization by default
gen_alg = RealGA(fitness_function)
initialize random one-dimensional population of size 20 within interval (0,
→˓1000)
gen_alg.init_random_population(20, 1, (0, 1000))

Then you may start computation by gen_alg.run(number_of_generations) and obtain the currently best found
solution by gen_alg.best_solution.

_adjust_to_interval(var)
This method replaces NaN, inf, -inf in var by numpy.nan_to_num() and then returns var if it is within the
specified interval. Otherwise returns lower bound of the interval if (var < lower bound) or upper bound of
the interval if (var > upper bound).

Parameters var (list, float) – A float or a list of floats to adjust to the specified interval.

Returns adjusted input parameter

_check_init_random_population(size, dim, interval)
This method verifies the input parameters of a random initialization.

Parameters

• size (int) – Size of a new population.

• dim (int) – Amount of space dimensions.

• interval (tuple) – The generated numbers of each dimension will be within this in-
terval (start point included, end point excluded). Both end points must be different integer
values.

_check_parameters()

_compute_fitness(chromosome)
This method computes fitness value of the given chromosome.

Parameters chromosome (float, list) – A chromosome of genetic algorithm. May be
a single float or a list of floats in case of multiple dimensions. Defined fitness function
(self.fitness_func) must deal with this chromosome representation.

Returns fitness value of the given chromosome

_generate_random_population(size, dim, interval)
This method generates a new random population by the given input parameters.

24 Chapter 9. geneticalgs

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#float

geneticalgs Documentation, Release 1.0

Parameters

• size (int) – Size of a new population.

• dim (int) – Amount of space dimensions.

• interval (tuple) – The generated numbers of each dimension will be within this
interval (start point included, end point excluded).

Returns Array rows represent chromosomes. Number of columns is specified with dim param-
eter.

Return type array (numpy.array)

_get_chromosome_return_value(chromosome)
This method returns a vector (chromosome as a list of floats) or a single float depending on number of
elements in the given chromosome.

Parameters chromosome (list) – This list contains a single float or represents a vector of
floats in case of multiple dimensions.

Returns chromosome[0] iff there is only 1 element in the list, otherwise chromosome

_get_mut_bit_offset()
Returns bit number (from left (index 0) to the right) in 32- or 64-bit big-endian floating point binary repre-
sentation (IEEE 754) from which a mantissa begins. It is necessary because this real GA implementation
mutates only mantissa bits (mutation of exponent changes a float number the undesired fast and unexpected
way).

_invert_bit(chromosome, bit_num)
This method mutates the appropriate bits of the chromosome from bit_num with the specified mutation
probability. The method mutates bit_num’s bits of all floats in a list represented chromosome in case of
multiple dimensions.

Parameters

• chromosome (float, list) – A single float or a list of floats in case of multiple
dimensions.

• bit_num (list) – List of bits’ numbers to invert.

Returns mutated chromosome (float, list)

_is_chromosome_list(chromosome)
This method returns True iff chromosome is a list (even list of just 1 element), otherwise False.

Parameters chromosome (float, list) – A chromosome of GA population. May be float
or a list of floats in case of multiple dimensions.

Returns True iff the given chromosome is a list (even a list of just 1 element), otherwise False.

_replace_bits(source, target, start, stop)
Replaces target bits with source bits in interval (start, stop) (both included) with the specified crossover
probability. This interval represents positions of bits to replace (minimum start point is 0 and maximum
end point is self._bin_length - 1).

Parameters

• source (float, list) – Values in source are used as replacement for target. May be
a float or a list of floats in case of multiple dimensions.

• target (float, list) – Values in target are replaced with values in source. May be
a float or a list of floats in case of multiple dimensions.

• start (int) – Start point of interval (included).

9.1. geneticalgs package 25

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/array.html#module-array
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int

geneticalgs Documentation, Release 1.0

• stop (int) – End point of interval (included).

Returns Target with replaced bits with source one in the interval (start, stop) (both included).

Return type target (float, list)

init_random_population(size, dim, interval)
Initializes a new random population of the given size with chromosomes’ values within the given interval
(start point included, end point excluded) with the specified amount of dimensions.

Parameters

• size (int) – Size of a new random population. Must be at least 2.

• dim (int) – Amount of space dimensions.

• interval (tuple) – The generated numbers of each dimension will be within this
interval (start point included, end point excluded).

9.1.4 geneticalgs.binary_ga module

class geneticalgs.binary_ga.BinaryGA(data=None, fitness_func=None, optim=’max’,
selection=’rank’, mut_prob=0.05, mut_type=1,
cross_prob=0.95, cross_type=1, elitism=True, tour-
nament_size=None)

Bases: geneticalgs.standard_ga.StandardGA

This class realizes GA over a binary encoded input data. In other words, the algorithm tries to find a combination
of the input data with the best fitness value.

You may initialize instance of this class the following way

from geneticalgs import BinaryGA

define data whose best combination we are searching for
input_data = [1,2,3,7,-1,-20]

define a simple fitness function
def fitness_function(chromosome, data):

this function searches for the greatest sum of numbers in data
chromosome contains positions (from left 0 to right *len(data)-1) of bits 1
sum = 0
for bit in chromosome:

sum += data[bit]

return sum

initialize standard binary GA
gen_alg = BinaryGA(input_data, fitness_function)
initialize random population of size 6
gen_alg.init_random_population(6)

Then you may start computation by gen_alg.run(number_of_generations) and obtain the currently best found
solution by gen_alg.best_solution.

_check_init_random_population(size)
This method verifies the input parameter of a random initialization.

Parameters size (int) – Size of a new population to check.

Returns Maximum amount of the input data combinations.

26 Chapter 9. geneticalgs

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#int

geneticalgs Documentation, Release 1.0

Return type max_num (int)

_check_parameters()

_compute_fitness(chromosome)
This method computes fitness value of the given chromosome.

Parameters chromosome (list) – A binary encoded chromosome of genetic algorithm. De-
fined fitness function (self.fitness_func) must deal with this chromosome representation.

Returns fitness value of the given chromosome

_generate_random_population(max_num, size)
This method generates a new random population by the given input parameters.

Parameters

• max_num (int) – Maximum amount of the input data combinations.

• size (int) – Size of a new population.

Returns list if integers in interval [1, maxnum) that represents a binary encoded combination.

Return type population (list)

_get_bit_positions(number)
This method receives a positive decimal integer number and returns positions of bit 1 in its binary repre-
sentation. However, these positions are transformed the following way: they are mapped on the data list
(self.data) “as is”. It means that LSB (least significant bit) is mapped on the last position of the data list
(e.g. self._bin_length - 1), MSB is mapped on the first position of the data list (e.g. 0) and so on.

Parameters number (int) – This decimal number represents binary encoded combination of
the input data (self.data).

Returns list of positions with bit 1 (these positions are mapped on the input data list “as is” and
thus, LSB is equal to index (self._bin_length - 1) of the input data list).

_invert_bit(chromosome, bit_num)
This method mutates the appropriate bits of the given chromosome from bit_num with the specified muta-
tion probability.

Parameters

• chromosome (list) – Binary encoded chromosome (it contains positions of bit 1 ac-
cording to self.data).

• bit_num (list) – List of bits’ numbers to invert.

Returns mutated chromosome as binary representation of self.data (it contains positions of bit
1)

Return type mutant (list)

_replace_bits(source, target, start, stop)
Replaces target bits with source bits in interval (start, stop) (both included) with the specified crossover
probability and returns target. This interval represents positions of bits to replace (minimum start point is
0 and maximum end point is self._bin_length - 1).

Parameters

• source (list) – Values in source are used as replacement for target.

• target (list) – Values in target are replaced with values in source.

• start (int) – Start point of interval (included).

9.1. geneticalgs package 27

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

geneticalgs Documentation, Release 1.0

• stop (int) – End point of interval (included).

Returns target with replaced bits in the interval (start, stop) (both included)

init_random_population(size)
Initializes a new random population of the given size.

Parameters size (int) – Size of a new random population. Must be greater than 3 and less
than the amount of all possible combinations of the input data.

9.1.5 geneticalgs.diffusion_ga module

class geneticalgs.diffusion_ga.DiffusionGA(instance)
Bases: object

This class implements diffusion model of genetic algorithms. The current implementation supports four neigh-
bours (up, down, left, right) of a currently processed cell. Supports the standard selection types (e.g. “rank”,
“roulette”, “tournament”). It’s evident that the maximum tournament size is 4 in this case.

You may initialize instance of this class the following way

from geneticalgs import RealGA, DiffusionGA
import math

define some function whose global minimum or maximum we are searching for
this function takes as input one-dimensional number
def fitness_function(x):

the same function is used in examples
return abs(x*(math.sin(x/11)/5 + math.sin(x/110)))

initialize standard real GA with fitness maximization by default
gen_alg = RealGA(fitness_function)
then initialize diffusion GA using the already initialized real GA instance
dga = DiffusionGA(gen_alg)
initialize random one-dimensional population of size 20 within interval (0,
→˓1000)
dga.init_random_population(20, 1, (0, 1000))

BinaryGA is used the same way. You may start computation by dga.run(number_of_generations) and obtain
the currently best found solution by dga.best_solution.

_compute_diffusion_generation(chrom_arr)
This method computes a new generation of a diffusion model of GA.

Parameters chrom_arr (numpy.array) – Diffusion array of chromosomes (binary en-
coded, float or a list of floats) of the current generation.

Returns New diffusion arrays of chromosomes and their fitness values of the next generation.

Return type new_chrom_array, new_fitness_arr (numpy.array, numpy.array)

_construct_diffusion_model(population)
Constructs two arrays: first for chromosomes of GA, second for their fitness values. The current imple-
mentation supports construction of only 2D square arrays. Thus, an array side is a square root of the given
population length. If the calculated square root is a fractional number, it will be truncated that means the
last chromosomes in population may not be presented in the constructed arrays.

Parameters population (list) – List of GA chromosomes. Same as in
self.init_population(new_population).

28 Chapter 9. geneticalgs

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#object

geneticalgs Documentation, Release 1.0

_find_critical_values(fitness_arr)
Finds 1D or 2D array coordinates of the best and the worst fitness values in the given array. Returns
coordinates of the first occurrence of these critical values.

Parameters fitness_arr (numpy.array) – Array of fitness values.

Returns Coordinates of the best and the worst fitness values as (index_best, index_worst) in 1D
or ((row, column), (row, column)) in 2D.

Return type coords_best, coords_worst (tuple)

_get_neighbour(row, column)
The method returns a chromosome selected from the four neighbours (up, down, left, right) of the currently
processed cell (specified with the given row and column) according to the selection type (“rank”, “roulette”
or “tournament”).

Parameters

• row (int) – Row of a current cell.

• column (int) – Column of a current cell.

Returns A chromosome selected from neighbours according to the specified selection type
(“rank”, “roulette”, “tournament”).

Return type chromosome (binary encoded, float, list of floats)

_init_diffusion_model(population)
This method constructs diffusion model from the given population and then updates the currently best
found solution.

Parameters population (list) – List of GA chromosomes.

best_solution
Returns tuple in the following form – (best chromosome, its fitness value).

Returns tuple with the currently best found chromosome and its fitness value.

init_population(new_population)
Initializes population with the given chromosomes (binary encoded, float or a list of floats) in
new_population. The fitness values of these chromosomes will be computed by a specified fitness function.

It is recommended to have new_population size equal to some squared number (9, 16, 100, 625 etc.) in
case of diffusion model of GA. Otherwise some last chromosomes in the given population will be lost as
the current implementation supports only square arrays of diffusion model.

Parameters new_population (list) – A new population of chromosomes of size at least
4. A single chromosome in case of binary GA is represented as a list of bits’ positions with
value 1 in the following way: LSB (least significant bit) has position (len(self.data) - 1)
and MSB (most significant bit) has position 0. If it is a GA on real values, an individual is
represented as a float or a list of floats in case of multiple dimensions.

init_random_population(size, dim=None, interval=None)
Initializes a new random population with the given parameters.

Parameters

• size (int) – A size of new generated population. Must be at least 2 in case of RealGA
and at least 4 in case of BinaryGA.

• dim (int, None) – Amount of space dimensions in case of RealGA.

9.1. geneticalgs package 29

https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/constants.html#None

geneticalgs Documentation, Release 1.0

• interval (tuple, None) – The generated numbers of each dimension will be within
this interval (start point included, end point excluded). Must be specified in case of Re-
alGA.

population
Returns the following tuple – (array of chromosomes, array of their fitness values).

Returns Array of chromosomes and another array with their fitness values.

Return type array of chromosomes, array of fitness values (tuple)

run(max_generation)
Starts a diffusion GA. The algorithm performs max_generation generations and then stops. Old population
is completely replaced with a new computed one at the end of each generation.

Parameters max_generation (int) – Maximum number of GA generations.

Returns List of average fitness values for each generation (including original population).

Return type fitness_progress (list)

9.1.6 geneticalgs.migration_ga module

class geneticalgs.migration_ga.MigrationGA(type=’binary’)
Bases: object

This class implements migration model of GA, namely island model (not stepping-stone). It works with binary
or real GA.

type
str – Type of used genetic algorithms: may be ‘binary’ or ‘real’.

You may initialize instance of this class the following way

from geneticalgs import RealGA, MigrationGA
import math

define some function whose global minimum or maximum we are searching for
this function takes as input one-dimensional number
def fitness_function(x):

the same function is used in examples
return abs(x*(math.sin(x/11)/5 + math.sin(x/110)))

initialize two or more standard real GAs with fitness maximization by default
gen_alg1 = RealGA(fitness_function)
gen_alg2 = RealGA(fitness_function)

initialize random one-dimensional populations of size 10 and 15 within interval
→˓(0, 1000)
gen_alg1.init_random_population(10, 1, (0, 1000))
gen_alg2.init_random_population(15, 1, (0, 1000))

then initialize migration GA using the already initialized standard GA instances
mga = MigrationGA(type='real') # set type of used instances
mga.init_populations([gen_alg1, gen_alg2])

Migration model with BinaryGA is used the same way. You may start computation by mga.run(*args).

_check_parameters()

30 Chapter 9. geneticalgs

https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#object

geneticalgs Documentation, Release 1.0

_compare_solutions()
Compares best solutions of the specified GA instances and returns the best solution.

Returns Best solution across all GA instances as (best chromosome, its fitness value).

Return type best_solution (tuple)

init_populations(ga_list)
This method initializes migration model of GA. Type of optimization (‘min’ or ‘max’) will be set to the
same value of the first given GA instance. Valid GA instances are RealGA and BinaryGA.

Parameters ga_list (list) – List of BinaryGA (or RealGA) instances with already initial-
ized populations.

run(max_generation, period=1, migrant_num=1, cloning=True, migrate=True)
Runs a migration model of GA.

Parameters

• max_generation (int) – Maximum number of GA generations.

• period (int) – How often migration must be performed. Must be less than or equal to
max_generation.

• migrant_num (int) – How many best migrants will travel to all another populations.

• cloning (True, False) – Can migrants clone? If False, an original population will
not have its migrants after a migration. Otherwise, clones of migrants will remain in their
original population after the migration of originals.

• migrate (True, False) – Turns on/off migration process. It is useful in case of
running GA by only one generation so period must be also set to 1, but you want to
perform migration with period greater than 1 and thus, set migrate initially to False and
set it to True when you actually want the algorithm to perform migration. This was used
in benchmarking by COCO BBOB platform.

Returns fitness_progress contains lists of average fitness value of each generation for each spec-
ified GA instance. best_solution is the best solution across all GA instances as in form (best
chromosome, its fitness value).

Return type fitness_progress, best_solution (tuple)

You may use this method the standard way

avg_fitness_progress, best_solution = mga.run(50, 10, 2)

or in more unusual way if you want to get the best found solution for each generation

max_generation = 10
for i in range(max_generation):

perform migration every four generations
if i > 0 and i % 3 == 0:

migrate = True
else:

migrate = False

_, best_solution = mga.run(1, 1, 2, cloning=True, migrate=migrate)

9.1. geneticalgs package 31

https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/functions.html#tuple

geneticalgs Documentation, Release 1.0

9.1.7 Module contents

class geneticalgs.StandardGA(fitness_func=None, optim=’max’, selection=’rank’, mut_prob=0.05,
mut_type=1, cross_prob=0.95, cross_type=1, elitism=True, tourna-
ment_size=None)

Bases: object

This class implements the base functionality of genetic algorithms and must be inherited. In other words,
the class doesn’t provide functionality of genetic algorithms by itself. This class is inherited by RealGA and
BinaryGA classes in the current implementation.

fitness_func
function – This function must compute fitness value of a single chromosome. Function parameters depend
on the implemented subclasses of this class.

optim
str – What this genetic algorithm must do with fitness value: maximize or minimize. May be ‘min’ or
‘max’. Default is “max”.

selection
str – Parent selection type. May be “rank” (Rank Wheel Selection), “roulette” (Roulette Wheel Selection)
or “tournament”. Default is “rank”.

tournament_size
int – Defines the size of tournament in case of ‘selection’ == ‘tournament’. Default is None.

mut_prob
float – Probability of mutation. Recommended values are 0.5-1%. Default is 0.5% (0.05).

mut_type
int – This parameter defines how many chromosome bits will be mutated. Default is 1.

cross_prob
float – Probability of crossover. Recommended values are 80-95%. Default is 95% (0.95).

cross_type
int – This parameter defines crossover type. The following types are allowed: single point (1), two point
(2) and multiple point (2 < cross_type). The extreme case of multiple point crossover is uniform one
(cross_type == all_bits). The specified number of bits (cross_type) are crossed in case of multiple point
crossover. Default is 1.

elitism
True, False – Elitism on/off. Default is True.

best_solution
Returns tuple in the following form – (best chromosome, its fitness value).

Returns tuple with the currently best found chromosome and its fitness value.

extend_population(elem_list)
DOES NOT WORK WITH DIFFUSION GENETIC ALGORITHM.

Extends a current population with the new elements. Be careful with type of elements in elem_list: they
must have the same type as elements of a current population, e.g. IndividualGA objects with the appropri-
ate chromosome representation (binary encoded for BinaryGA, a float or a list of floats for RealGA).

Parameters elem_list (list) – New elements of the same type (including chromosome
representation) as in the current population.

init_population(chromosomes, interval=None)
Initializes a population with the given chromosomes (binary encoded, float or a list of floats). The fitness
values of these chromosomes will be computed by a specified fitness function.

32 Chapter 9. geneticalgs

https://docs.python.org/2/library/functions.html#object

geneticalgs Documentation, Release 1.0

It is recommended to have an amount of chromosomes equal to some squared number (9, 16, 100, 625
etc.) in case of diffusion model of GA. Otherwise some last chromosomes will be lost as the current
implementation supports only square arrays of diffusion model.

Parameters

• chromosomes (list) – Chromosomes of a new population. A single chromosome in
case of binary GA is represented as a list of bits’ positions with value 1 in the following
way: LSB (least significant bit) has position (len(self.data) - 1) and MSB (most significant
bit) has position 0. If it is a GA on real values, a chromosome is represented as a float or a
list of floats in case of multiple dimensions. Size of chromosomes list must be at least 4.

• interval (tuple) – An interval in which we are searching the best solution. Must be
specified in case of RealGA.

run(max_generation)
Starts a standard GA (RealGA or BinaryGA). The algorithm performs max_generation generations and
then stops. Old population is completely replaced with a new computed one at the end of each generation.

Parameters max_generation (int) – Maximum number of GA generations.

Returns List of average fitness values for each generation (including original population)

Return type fitness_progress (list)

class geneticalgs.IndividualGA(chromosome, fitness_val)
Bases: object

The class represents an individual of population in GA.

chromosome
float, list – A chromosome represented a solution. The solution may be binary encoded in chromosome or
be a float or a list of floats in case of dealing with real value solutions. The list contains only positions of
bit 1 (according to input data list) in case of binary encoded solution.

fitness_val
float, int – Fitness value of the given chromosome.

class geneticalgs.BinaryGA(data=None, fitness_func=None, optim=’max’, selection=’rank’,
mut_prob=0.05, mut_type=1, cross_prob=0.95, cross_type=1,
elitism=True, tournament_size=None)

Bases: geneticalgs.standard_ga.StandardGA

This class realizes GA over a binary encoded input data. In other words, the algorithm tries to find a combination
of the input data with the best fitness value.

You may initialize instance of this class the following way

from geneticalgs import BinaryGA

define data whose best combination we are searching for
input_data = [1,2,3,7,-1,-20]

define a simple fitness function
def fitness_function(chromosome, data):

this function searches for the greatest sum of numbers in data
chromosome contains positions (from left 0 to right *len(data)-1) of bits 1
sum = 0
for bit in chromosome:

sum += data[bit]

return sum

9.1. geneticalgs package 33

https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#object

geneticalgs Documentation, Release 1.0

initialize standard binary GA
gen_alg = BinaryGA(input_data, fitness_function)
initialize random population of size 6
gen_alg.init_random_population(6)

Then you may start computation by gen_alg.run(number_of_generations) and obtain the currently best found
solution by gen_alg.best_solution.

init_random_population(size)
Initializes a new random population of the given size.

Parameters size (int) – Size of a new random population. Must be greater than 3 and less
than the amount of all possible combinations of the input data.

class geneticalgs.RealGA(fitness_func=None, optim=’max’, selection=’rank’, mut_prob=0.05,
mut_type=1, cross_prob=0.95, cross_type=1, elitism=True, tourna-
ment_size=None)

Bases: geneticalgs.standard_ga.StandardGA

This class realizes GA over the real values. In other words, it tries to find global minimum or global maximum
(depends on the settings) of a given fitness function.

fitness_func
function – This function must compute fitness value of a single chromosome. Function parameters depend
on the implemented subclasses of this class.

optim
str – What this genetic algorithm must do with fitness value: maximize or minimize. May be ‘min’ or
‘max’. Default is “max”.

selection
str – Parent selection type. May be “rank” (Rank Wheel Selection), “roulette” (Roulette Wheel Selection)
or “tournament”. Default is “rank”.

tournament_size
int – Defines the size of tournament in case of ‘selection’ == ‘tournament’. Default is None.

mut_prob
float – Probability of mutation. Recommended values are 0.5-1%. Default is 0.5% (0.05).

mut_type
int – This parameter defines how many chromosome bits will be mutated. Default is 1.

cross_prob
float – Probability of crossover. Recommended values are 80-95%. Default is 95% (0.95).

cross_type
int – This parameter defines crossover type. The following types are allowed: single point (1), two point
(2) and multiple point (2 < cross_type). The extreme case of multiple point crossover is uniform one
(cross_type == all_bits). The specified number of bits (cross_type) are crossed in case of multiple point
crossover. Default is 1.

elitism
True, False – Elitism on/off. Default is True.

You may initialize instance of this class the following way

from geneticalgs import RealGA
import math

34 Chapter 9. geneticalgs

https://docs.python.org/2/library/functions.html#int

geneticalgs Documentation, Release 1.0

define some function whose global minimum or maximum we are searching for
this function takes as input one-dimensional number
def fitness_function(x):

the same function is used in examples
return abs(x*(math.sin(x/11)/5 + math.sin(x/110)))

initialize standard real GA with fitness maximization by default
gen_alg = RealGA(fitness_function)
initialize random one-dimensional population of size 20 within interval (0,
→˓1000)
gen_alg.init_random_population(20, 1, (0, 1000))

Then you may start computation by gen_alg.run(number_of_generations) and obtain the currently best found
solution by gen_alg.best_solution.

init_random_population(size, dim, interval)
Initializes a new random population of the given size with chromosomes’ values within the given interval
(start point included, end point excluded) with the specified amount of dimensions.

Parameters

• size (int) – Size of a new random population. Must be at least 2.

• dim (int) – Amount of space dimensions.

• interval (tuple) – The generated numbers of each dimension will be within this
interval (start point included, end point excluded).

class geneticalgs.DiffusionGA(instance)
Bases: object

This class implements diffusion model of genetic algorithms. The current implementation supports four neigh-
bours (up, down, left, right) of a currently processed cell. Supports the standard selection types (e.g. “rank”,
“roulette”, “tournament”). It’s evident that the maximum tournament size is 4 in this case.

You may initialize instance of this class the following way

from geneticalgs import RealGA, DiffusionGA
import math

define some function whose global minimum or maximum we are searching for
this function takes as input one-dimensional number
def fitness_function(x):

the same function is used in examples
return abs(x*(math.sin(x/11)/5 + math.sin(x/110)))

initialize standard real GA with fitness maximization by default
gen_alg = RealGA(fitness_function)
then initialize diffusion GA using the already initialized real GA instance
dga = DiffusionGA(gen_alg)
initialize random one-dimensional population of size 20 within interval (0,
→˓1000)
dga.init_random_population(20, 1, (0, 1000))

BinaryGA is used the same way. You may start computation by dga.run(number_of_generations) and obtain
the currently best found solution by dga.best_solution.

best_solution
Returns tuple in the following form – (best chromosome, its fitness value).

Returns tuple with the currently best found chromosome and its fitness value.

9.1. geneticalgs package 35

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#object

geneticalgs Documentation, Release 1.0

init_population(new_population)
Initializes population with the given chromosomes (binary encoded, float or a list of floats) in
new_population. The fitness values of these chromosomes will be computed by a specified fitness function.

It is recommended to have new_population size equal to some squared number (9, 16, 100, 625 etc.) in
case of diffusion model of GA. Otherwise some last chromosomes in the given population will be lost as
the current implementation supports only square arrays of diffusion model.

Parameters new_population (list) – A new population of chromosomes of size at least
4. A single chromosome in case of binary GA is represented as a list of bits’ positions with
value 1 in the following way: LSB (least significant bit) has position (len(self.data) - 1)
and MSB (most significant bit) has position 0. If it is a GA on real values, an individual is
represented as a float or a list of floats in case of multiple dimensions.

init_random_population(size, dim=None, interval=None)
Initializes a new random population with the given parameters.

Parameters

• size (int) – A size of new generated population. Must be at least 2 in case of RealGA
and at least 4 in case of BinaryGA.

• dim (int, None) – Amount of space dimensions in case of RealGA.

• interval (tuple, None) – The generated numbers of each dimension will be within
this interval (start point included, end point excluded). Must be specified in case of Re-
alGA.

population
Returns the following tuple – (array of chromosomes, array of their fitness values).

Returns Array of chromosomes and another array with their fitness values.

Return type array of chromosomes, array of fitness values (tuple)

run(max_generation)
Starts a diffusion GA. The algorithm performs max_generation generations and then stops. Old population
is completely replaced with a new computed one at the end of each generation.

Parameters max_generation (int) – Maximum number of GA generations.

Returns List of average fitness values for each generation (including original population).

Return type fitness_progress (list)

class geneticalgs.MigrationGA(type=’binary’)
Bases: object

This class implements migration model of GA, namely island model (not stepping-stone). It works with binary
or real GA.

type
str – Type of used genetic algorithms: may be ‘binary’ or ‘real’.

You may initialize instance of this class the following way

from geneticalgs import RealGA, MigrationGA
import math

define some function whose global minimum or maximum we are searching for
this function takes as input one-dimensional number
def fitness_function(x):

the same function is used in examples
return abs(x*(math.sin(x/11)/5 + math.sin(x/110)))

36 Chapter 9. geneticalgs

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#object

geneticalgs Documentation, Release 1.0

initialize two or more standard real GAs with fitness maximization by default
gen_alg1 = RealGA(fitness_function)
gen_alg2 = RealGA(fitness_function)

initialize random one-dimensional populations of size 10 and 15 within interval
→˓(0, 1000)
gen_alg1.init_random_population(10, 1, (0, 1000))
gen_alg2.init_random_population(15, 1, (0, 1000))

then initialize migration GA using the already initialized standard GA instances
mga = MigrationGA(type='real') # set type of used instances
mga.init_populations([gen_alg1, gen_alg2])

Migration model with BinaryGA is used the same way. You may start computation by mga.run(*args).

init_populations(ga_list)
This method initializes migration model of GA. Type of optimization (‘min’ or ‘max’) will be set to the
same value of the first given GA instance. Valid GA instances are RealGA and BinaryGA.

Parameters ga_list (list) – List of BinaryGA (or RealGA) instances with already initial-
ized populations.

run(max_generation, period=1, migrant_num=1, cloning=True, migrate=True)
Runs a migration model of GA.

Parameters

• max_generation (int) – Maximum number of GA generations.

• period (int) – How often migration must be performed. Must be less than or equal to
max_generation.

• migrant_num (int) – How many best migrants will travel to all another populations.

• cloning (True, False) – Can migrants clone? If False, an original population will
not have its migrants after a migration. Otherwise, clones of migrants will remain in their
original population after the migration of originals.

• migrate (True, False) – Turns on/off migration process. It is useful in case of
running GA by only one generation so period must be also set to 1, but you want to
perform migration with period greater than 1 and thus, set migrate initially to False and
set it to True when you actually want the algorithm to perform migration. This was used
in benchmarking by COCO BBOB platform.

Returns fitness_progress contains lists of average fitness value of each generation for each spec-
ified GA instance. best_solution is the best solution across all GA instances as in form (best
chromosome, its fitness value).

Return type fitness_progress, best_solution (tuple)

You may use this method the standard way

avg_fitness_progress, best_solution = mga.run(50, 10, 2)

or in more unusual way if you want to get the best found solution for each generation

max_generation = 10
for i in range(max_generation):

perform migration every four generations
if i > 0 and i % 3 == 0:

9.1. geneticalgs package 37

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/functions.html#tuple

geneticalgs Documentation, Release 1.0

migrate = True
else:

migrate = False

_, best_solution = mga.run(1, 1, 2, cloning=True, migrate=migrate)

38 Chapter 9. geneticalgs

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

39

geneticalgs Documentation, Release 1.0

40 Chapter 10. Indices and tables

Python Module Index

g
geneticalgs, 32
geneticalgs.binary_ga, 26
geneticalgs.diffusion_ga, 28
geneticalgs.migration_ga, 30
geneticalgs.real_ga, 23
geneticalgs.standard_ga, 19

41

geneticalgs Documentation, Release 1.0

42 Python Module Index

Index

Symbols
_adjust_to_interval() (geneticalgs.real_ga.RealGA

method), 24
_check_common_parameters() (geneti-

calgs.standard_ga.StandardGA method),
20

_check_init_random_population() (geneti-
calgs.binary_ga.BinaryGA method), 26

_check_init_random_population() (geneti-
calgs.real_ga.RealGA method), 24

_check_init_random_population() (geneti-
calgs.standard_ga.StandardGA method),
20

_check_parameters() (geneticalgs.binary_ga.BinaryGA
method), 27

_check_parameters() (geneti-
calgs.migration_ga.MigrationGA method),
30

_check_parameters() (geneticalgs.real_ga.RealGA
method), 24

_compare_solutions() (geneti-
calgs.migration_ga.MigrationGA method),
30

_compute_diffusion_generation() (geneti-
calgs.diffusion_ga.DiffusionGA method),
28

_compute_fitness() (geneticalgs.binary_ga.BinaryGA
method), 27

_compute_fitness() (geneticalgs.real_ga.RealGA
method), 24

_compute_fitness() (geneti-
calgs.standard_ga.StandardGA method),
20

_compute_rank_wheel_sum() (geneti-
calgs.standard_ga.StandardGA method),
20

_conduct_tournament() (geneti-
calgs.standard_ga.StandardGA method),
20

_construct_diffusion_model() (geneti-
calgs.diffusion_ga.DiffusionGA method),
28

_cross() (geneticalgs.standard_ga.StandardGA method),
21

_find_critical_values() (geneti-
calgs.diffusion_ga.DiffusionGA method),
28

_generate_random_population() (geneti-
calgs.binary_ga.BinaryGA method), 27

_generate_random_population() (geneti-
calgs.real_ga.RealGA method), 24

_generate_random_population() (geneti-
calgs.standard_ga.StandardGA method),
21

_get_bit_positions() (geneticalgs.binary_ga.BinaryGA
method), 27

_get_chromosome_return_value() (geneti-
calgs.real_ga.RealGA method), 25

_get_mut_bit_offset() (geneticalgs.real_ga.RealGA
method), 25

_get_neighbour() (geneticalgs.diffusion_ga.DiffusionGA
method), 29

_init_diffusion_model() (geneti-
calgs.diffusion_ga.DiffusionGA method),
29

_invert_bit() (geneticalgs.binary_ga.BinaryGA method),
27

_invert_bit() (geneticalgs.real_ga.RealGA method), 25
_invert_bit() (geneticalgs.standard_ga.StandardGA

method), 21
_is_chromosome_list() (geneticalgs.real_ga.RealGA

method), 25
_mutate() (geneticalgs.standard_ga.StandardGA

method), 21
_random_diff() (geneticalgs.standard_ga.StandardGA

method), 21
_replace_bits() (geneticalgs.binary_ga.BinaryGA

method), 27
_replace_bits() (geneticalgs.real_ga.RealGA method), 25

43

geneticalgs Documentation, Release 1.0

_replace_bits() (geneticalgs.standard_ga.StandardGA
method), 21

_select_parents() (geneticalgs.standard_ga.StandardGA
method), 22

_sort_population() (geneticalgs.standard_ga.StandardGA
method), 22

_update_solution() (geneticalgs.standard_ga.StandardGA
method), 22

B
best_solution (geneticalgs.diffusion_ga.DiffusionGA at-

tribute), 29
best_solution (geneticalgs.DiffusionGA attribute), 35
best_solution (geneticalgs.standard_ga.StandardGA at-

tribute), 22
best_solution (geneticalgs.StandardGA attribute), 32
BinaryGA (class in geneticalgs), 33
BinaryGA (class in geneticalgs.binary_ga), 26

C
chromosome (geneticalgs.IndividualGA attribute), 33
chromosome (geneticalgs.standard_ga.IndividualGA at-

tribute), 19
cross_prob (geneticalgs.real_ga.RealGA attribute), 23
cross_prob (geneticalgs.RealGA attribute), 34
cross_prob (geneticalgs.standard_ga.StandardGA at-

tribute), 20
cross_prob (geneticalgs.StandardGA attribute), 32
cross_type (geneticalgs.real_ga.RealGA attribute), 23
cross_type (geneticalgs.RealGA attribute), 34
cross_type (geneticalgs.standard_ga.StandardGA at-

tribute), 20
cross_type (geneticalgs.StandardGA attribute), 32

D
DiffusionGA (class in geneticalgs), 35
DiffusionGA (class in geneticalgs.diffusion_ga), 28

E
elitism (geneticalgs.real_ga.RealGA attribute), 24
elitism (geneticalgs.RealGA attribute), 34
elitism (geneticalgs.standard_ga.StandardGA attribute),

20
elitism (geneticalgs.StandardGA attribute), 32
extend_population() (geneti-

calgs.standard_ga.StandardGA method),
22

extend_population() (geneticalgs.StandardGA method),
32

F
fitness_func (geneticalgs.real_ga.RealGA attribute), 23
fitness_func (geneticalgs.RealGA attribute), 34

fitness_func (geneticalgs.standard_ga.StandardGA
attribute), 19

fitness_func (geneticalgs.StandardGA attribute), 32
fitness_val (geneticalgs.IndividualGA attribute), 33
fitness_val (geneticalgs.standard_ga.IndividualGA

attribute), 19

G
geneticalgs (module), 32
geneticalgs.binary_ga (module), 26
geneticalgs.diffusion_ga (module), 28
geneticalgs.migration_ga (module), 30
geneticalgs.real_ga (module), 23
geneticalgs.standard_ga (module), 19

I
IndividualGA (class in geneticalgs), 33
IndividualGA (class in geneticalgs.standard_ga), 19
init_population() (geneticalgs.diffusion_ga.DiffusionGA

method), 29
init_population() (geneticalgs.DiffusionGA method), 35
init_population() (geneticalgs.standard_ga.StandardGA

method), 22
init_population() (geneticalgs.StandardGA method), 32
init_populations() (geneti-

calgs.migration_ga.MigrationGA method),
31

init_populations() (geneticalgs.MigrationGA method), 37
init_random_population() (geneti-

calgs.binary_ga.BinaryGA method), 28
init_random_population() (geneticalgs.BinaryGA

method), 34
init_random_population() (geneti-

calgs.diffusion_ga.DiffusionGA method),
29

init_random_population() (geneticalgs.DiffusionGA
method), 36

init_random_population() (geneticalgs.real_ga.RealGA
method), 26

init_random_population() (geneticalgs.RealGA method),
35

M
MigrationGA (class in geneticalgs), 36
MigrationGA (class in geneticalgs.migration_ga), 30
mut_prob (geneticalgs.real_ga.RealGA attribute), 23
mut_prob (geneticalgs.RealGA attribute), 34
mut_prob (geneticalgs.standard_ga.StandardGA at-

tribute), 20
mut_prob (geneticalgs.StandardGA attribute), 32
mut_type (geneticalgs.real_ga.RealGA attribute), 23
mut_type (geneticalgs.RealGA attribute), 34
mut_type (geneticalgs.standard_ga.StandardGA at-

tribute), 20

44 Index

geneticalgs Documentation, Release 1.0

mut_type (geneticalgs.StandardGA attribute), 32

O
optim (geneticalgs.real_ga.RealGA attribute), 23
optim (geneticalgs.RealGA attribute), 34
optim (geneticalgs.standard_ga.StandardGA attribute), 19
optim (geneticalgs.StandardGA attribute), 32

P
population (geneticalgs.diffusion_ga.DiffusionGA

attribute), 30
population (geneticalgs.DiffusionGA attribute), 36

R
RealGA (class in geneticalgs), 34
RealGA (class in geneticalgs.real_ga), 23
run() (geneticalgs.diffusion_ga.DiffusionGA method), 30
run() (geneticalgs.DiffusionGA method), 36
run() (geneticalgs.migration_ga.MigrationGA method),

31
run() (geneticalgs.MigrationGA method), 37
run() (geneticalgs.standard_ga.StandardGA method), 23
run() (geneticalgs.StandardGA method), 33

S
selection (geneticalgs.real_ga.RealGA attribute), 23
selection (geneticalgs.RealGA attribute), 34
selection (geneticalgs.standard_ga.StandardGA at-

tribute), 20
selection (geneticalgs.StandardGA attribute), 32
StandardGA (class in geneticalgs), 32
StandardGA (class in geneticalgs.standard_ga), 19

T
tournament_size (geneticalgs.real_ga.RealGA attribute),

23
tournament_size (geneticalgs.RealGA attribute), 34
tournament_size (geneticalgs.standard_ga.StandardGA

attribute), 20
tournament_size (geneticalgs.StandardGA attribute), 32
type (geneticalgs.migration_ga.MigrationGA attribute),

30
type (geneticalgs.MigrationGA attribute), 36

Index 45

	geneticalgs
	Implemented features
	Content description
	Requirements
	Installation
	Running tests
	Documentation
	License
	geneticalgs
	geneticalgs package

	Indices and tables
	Python Module Index

